
NRL Report 6106
NAREC Reference #28

NIP
A Floating-Point Interpretive Programming

System for the NAREC Computer

E. A. STENNETT AND L. S. BEARCE

Radio Techniques Branch
Radio Division

AND

R. M. MASON

Applied Mathematics Staff
Office of Director of Research

December 18, 1964

U. S. NAVAL RESEARCH LABORATORY

Washington, D.C.

I

CONTENTS

Abstract... 1

Problem Status .. 1
Authorization.. 1

INTRODUCTION... 1

PART 1-REGULAR-PRECISION INTERPRETIVE ROUTINE (NIP I) 1

1. Name of Subroutine ... 1
2. Class.. 1

3. Purpose... 2

4. Language Used .. 2
5. Authors... 2
6. Formal Statement ... 2

a. Conventions and Terminology ... 2
b. Definitions of Operations .. 4

7. Entry and Return 9
8. Output. ... 10
9. Tape Label ... 10

10. Address Information ... 10
11. External Working Memory .. 10
12. Versatility .. 10
13. Acknowledgements .. 10

PART 2-EXTENDED-PRECISION INTERPRETIVE ROUTINE (NIP II) 10

1. Name of Subroutine .. 10
2. Class.. 10

3. Purpose ... 10
4. Language Used .. 11
5. Author. .. 11
6. Formal Statement .. 11

a. Conventions and Terminology .. 11
b. Definitions of Operations .. 11

7. Entry and Return .. 11
8. Output... 12

9. Tape Labels .. 12
10. Address Information ... 12
11. External Working Memory .. 13
12. Versatility .. 13
13. Acknowledgments .. 13

i

Appendix A-The Floating-Point System .. 13
Appendix B -An Example of a Program Written in Extended Precision 17
Appendix C-Block Diagrams of the Elementary Extended-Precision Operations:

Addition, Complementation, Multiplication, and Division 28
Appendix D-Difference Plots for the Elementary Functions: Square Root,

Cosine, Arc Sine, Logarithm, and Exponential 32
Appendix E-Timing of NIP Pseudo-Orders 35
Appendix F-NIP Error Stops .. 36
Appendix G-Summary of NAR Coding Symbols for NAREC Orders 37
Appendix H-Summary of Basic and NAR Coding Symbols for NIP Pseudo-Orders,

Including Brief Descriptions of the Associated NIP Operations 38

ii

NIP
A Floating-Point Interpretive Programming System

for the NAREC Computer
E. A. STENNETT AND L. S. BEARCE

Radio Techniques Branch
Radio Division

and

R. M. MASON

Applied Mathematics Staff
Office of Director of Research

An interpretive programming system has been written for the U.S. Naval Research Laboratory's
medium-speed electronic digital computer (NAREC). This system, known as NIP (acronym for NAREC

Interpretive Programming system), provides for automatic floating-point computation over the range
10-1233 to 10+1233 in either of two modes. One mode, called "extended precision," allows for computa-

tional results containing as many as nineteen significant decimal digits. The other (and historically the
first) mode, called "regular precision," allows for as many as eleven significant decimal digits. Using

the same program, it is possible to compute in either mode, which provides a basis for determining the
cumulative effect of computational precision on results. This report discusses conventions and defines

instructions which are available for writing a program in the NIP language. A brief description of the
floating-point system, an example of a program written in extended precision, and a table of instruc-
tion execution times are included in the appendixes.

INTRODUCTION

The purpose of the NAREC Interpretive Pro-
gramming system (NIP) is to expedite the pro-
gramming process by providing easy-to-use,
interpreted, machine-like orders, called pseudo-
orders, which reduce the time and effort required
for programming and checking out routines.
Since the NAREC (Naval Research Electronic
Computer) is a fixed-point digital machine, the
programming of problems in machine language
often requires that much thought and effort be
devoted to the task of scaling. Not only must
suitable bounds be maintained on problem vari-
ables, but also considerable time and effort often
must be expended in order to insure significant
results. The programming system described
in this report eliminates, for practical purposes,
the problem of scaling through the use of a pseu-
do-order code. Various mathematical operations
may be performed on numbers expressed in
floating-point form, and various logical opera-
tions designed to facilitate the task of program-

NRL Problems B02-03 and R01-08; Projects RF 006-02-41-4351
and RR 003-09-41-5101. This is an interim report; wvork on this
problem is continuing.

Manuscript submitted April 16, 1964.

ming may be employed. The NIP system will
accept as input, decimal numbers which lie over
the range 10-999 to 10+999, and computation may
be carried out in either of two modes-the "reg-
ular-precision" mode which allows for compu-
tational results containing as many as eleven sig-
nificant decimal digits, or the "extended-precision"
mode which permits as many as nineteen sig-
nificant decimal digits.

This report is divided into two parts: Part I
describes the system as it is applied to regular-
precision computation; Part II describes the sys-
tem as it is applied to extended-precision com-
putation. Both parts follow the standard form
for reporting NAREC routines.

PART I
REGULAR-PRECISION INTERPRETIVE

ROUTINE (NIP I)

1. Name of Subroutine

NIP I-Floating-Point Interpretive Routine.

2. Class

Y1, Interpretive Routine, Floating-Point.

1

STENNETT, BEARCE, AND MASON

3. Purpose

NIP I is an interpretive subroutine, written
in machine language, which provides a program-
ming language for automatic floating-point com-
putations on the NAREC. Through the use of a
pseudo-order code, floating-point programs may
be written using interpretive language, in much
the same way as fixed-point programs may be
written using machine language. The NIP
language, however, is much more powerful and
convenient. It contains not only floating-point
arithmetic and elementary function operations,
but also a substantial group of operations which
may be classified as programming aids. Included
in this group are automatic counters, address
modifiers, marker detectors, etc. Moreover,
there are input-output operations which provide
both automatic conversions and considerable
format flexibility. Finally, in addition to the
orders which are used directly for problem solv-
ing, a convenient tracking and monitoring order
has been incorporated.

4. Language Used

Actual NAREC machine language.

5. Authors

Edwin A. Stennett and Loren S. Bearce, Code
5425, and Robert M. Mason, Code. 4558.

6. Formal Statement

a. Conventions and Terminology-The material
presented under this heading is intended to pro-
vide the reader with sufficient background to
understand the definitions of the operations,
which follow in Section 6, and to enhance his
ability to apply these operations successfully.*
Some material pertaining to the extended-pre-
cision program (NIP II) is included in this section
in order to minimize redundancy in Part II of
this report.

1. All ambiguous decimal numbers in this
formal statement are underlined unless they ap-
pear as exponents or subscripts; all other numbers
are expressed in hexadecimal notation.

*For further clarification concerning terminology, see R. M. Mason,
"A Programming Glossary for NAREC Users," NRL Report 5779,
August 6, 1962.

2. Pseudo-instruction words follow the same
rule of formation as machine-instruction words.
This rule is illustrated on page eleven of NRL
Report 5779 and also in NAREC Reference
#22. All pseudo-instructions which require two
addresses, or an address and a parameter n, in-
clude parentheses in the basic coding symbol
and occupy full computer words.

3. The range of the signed-magnitude integer
n, used as a parameter in the address portion
of certain pseudo-instructions, is in general
given by the inequality -fff -- n - +fff. When
this parameter is interpreted by NIP, it must be
expressed as a positive three-digit hexadecimal
number preceded by a binary sign digit, i.e.,
complemented number representation is un-
acceptable. If the NAREC Assembly Routine*
is used, the number n must be expressed as a
positive decimal integer; moreover, it also must
be preceded by the minus sign character if n is
negative, since -4095 S n < 4095.

4. The range of the address s is given by the
inequality 0400 S s S 4ffe, unless otherwise speci-
fied. However, if use of NIP II (extended pre-
cision) is anticipated, then the range of this
address is given by 0900 - s - 4ffe, unless other-
wise specified. In general, if any part (or even
all) of the address portion of a pseudo-instruction
has not been specified, that part should be left
zero in order to allow for possible future exten-
sions of the system.

5. Each regular-precision NIP floating-point
number consists of two quantities:

a. a signed 44-bit fractional part, say M, and
b. a signed 12-bit exponent part, say q.

These two quantities, contained in two entire
words termed a "word-pair," occupy successive
storage locations, herein designated by s and
s+1, in the computer memory and are transferred
and treated as a unit. Reference to a word-pair,
symbolized (M,q), is required for and given to
only the first address s, unless otherwise stated.
Thus, the statement, "the contents of storage
location s" is understood to be identical to "the
word-pair contents of successive storage locations
s and s+1 (sometimes referred to as so and sj)."

When (M,q) represents a floating-decimal num-
ber, it has the interpretation M X 10" where M
and q are binary-coded-decimal, signed-mag-
nitude numbers. Moreover, M satisfies the

*NAREC Bulletin No. 31, December 19, 1961.

2

NRL REPORT 6106

inequality -1 < M < +1 at all times, and q satis-
fies the inequality -1000 < q < +1000 during
readin and -100 < q < +100 during printout
(using the fO pseudo-order). When (M,q) repre-
sents a floating-hexadecimal (or floating-binary)
number, it is interpreted as M X 2q where M and
q are "binary 2's complement" numbers. Fur-
thermore, M satisfies the inequality -1 < M <
+1 and q satisfies the inequality -fff - q - +fff
at all times. A floating-decimal, nonzero number
is said to be "adjusted" (normalized) or "in ad-
justed form" if it meets the additional condition:
IM 3 1/10. Similarly, a floating-hexadecimal, non-
zero number is said to be "adjusted" or "in ad-
justed form" provided that IMI - 1/2. The regular-
precision portion of the quantity M is contained
in and fills an arbitrary storage location. The
quantity q is contained in the next storage loca-
tion s+1 but fills only the left address portion.
The remainder of s+1 must be all zeros, except
when the extended-precision mode is employed -

in which case the remainder of s+1 contains the
extended-precision portion of M. Table 1 below
is presented to show how typical floating-point
numbers are represented.

6. Each floating-hexadecimal, nonzero num-
ber that enters a computation must be adjusted
prior to use. It is sufficient to do this one time
with the JP pseudo-order because all numbers
which result from succeeding pseudo-order oper-
ations are in adjusted form. Also, all floating-
decimal input that is converted by the CDDB or
CDB pseudo-orders is automatically adjusted.

7. Floating-point zeros are defined to be those
numbers (M,q) having the arithmetic portion
M equal to zero for any q. The particular value
of q is immaterial in any zero number; thus the

decimal and hexadecimal representations of zero
are identical, which is as it should be. Each zero
is considered exact, i.e., expressed with infinite
precision.

8. Floating-point markers are defined to be
those word-pairs (s,s+1) that are not numbers,
i.e., that have the sign digit of s equal to one and
the remainder of the arithmetic portion (the nu-
meric part) of s equal to zero for any s+l.

9. A "stopper" is defined as a floating-point
marker in which both words have the sign digit
equal to one and the numeric part equal to zero.
The state of the overflow digits is immaterial in
both markers and stoppers.
10. The main working register is a programmed

construction called the P register (where P de-
notes the adjective "pseudo"). It automatically
receives the result of most operations, and also
often serves as an operand source; hence the
answer from a previous operation is often kept
in proper position to be operated on by the next
pseudo-instruction. This "register," which oc-
cupies locations 03b4 and 03b5 (sometimes re-
ferred to as Po and Pi), then takes a prominent
role in most pseudo-orders.

11. In addition to the P register, two other
programmed registers are of importance - the
a- and y registers. The cr register, sometimes
referred to as co- and o-1, occupies locations 0202
and 0203 and performs much the same function
as the E counter on the NAREC main frame.
The right-hand side of o-0 (location 0202) always
contains the address of the pseudo-order cur-
rently being interpreted and is recorded auto-
matically before each error stop. The y register
occupies location 03b3 and is analogous to the C
register of the NAREC main frame, i.e., the

TABLE I
Examples of Floating-Point Numbers

Number in Regular-Precision Extended-Precision
Decimal Hexadecimal Hexadecimal

0.7 s O.b33 33 3333 33 O.b33 33 3333 33
s+1 0.000 00 0000 00 0.000 33 3333 33

6.4 s O.ccc cc cccc cd 0.ccc cc cccc cc
. s+l 0.003 .00 0000 00 0.003 cc cccc cd

0.10712 s O.db6 db 6db6 db O.db6 db 6db6 db
s+l f.ffd 00 0000 00 f.ffd 6d b6db 6e

0.66666 s f.555 55 5555 55 f.555 55 5555 55
s+l 0.000 00 0000 00 0.000 55 5555 55

3

STENNETT, BEARCE, AND MASON

pseudo-order currently being interpreted is
stored at location 03b3.

b. Definitions of Operations-The definitions
of the operations which follow include statements
of all changes in the contents of the P register
and all storage locations. It should be noted
specifically that the transfer of a word-pair be-
tween storage and the P register leaves the initial
word-pair unchanged. The immediate contents
of the A and U machine registers are destroyed
after entering the interpretive mode. However,
the contents of the P register are invariant under
all operations in machine language, unless the
contents of its storage locations are disturbed
directly.

Pseudo-Order Basic Coding
Number Symbol

dO ADL (n,s)
-fff - n - fff

Add the integer n to the left address of the word
at storage location s, and place the result in loca-
tion s.

d1 ADR (ns)
-fff - n - fff

Add the integer n to the right address of the word
at storage location s, and place the result in loca-
tion s.

d2 MCL s

If the P register contains a marker, transfer in-
terpretive control to the left pseudo-order of
storage location s; otherwise, proceed to the next
pseudo-order in sequence.

d3 MCR s

If the P register contains a marker, transfer in-
terpretive control to the right pseudo-order of
storage location s; otherwise, proceed to the next
psetildo-order in sequence.

d4 NCL s

If the sign digit of the fractional part of the P
register is zero, exit the interpretive mode of
control, enter the machine-language mode, and

transfer
cation s;
order in

control to the left order of storage lo-
otherwise, proceed to the next pseudo-
sequence.

d5 NCR s

If the sign digit of the fractional part of the P
register is zero, exit the interpretive mode of
control, enter the machine-language mode, and
transfer control to the right order of storage
location s; otherwise, proceed to the next pseudo-
order in sequence.

d6 CDDB (si,s2)

Starting at si, convert in sequence each nonzero
decimal-point, or fixed-point number, located in
the first of a pair of successive storage locations
(allotted for standard floating-point storage),
from possibly short-word binary-coded-decimal
form to adjusted floating binary, and store the
result in that pair of locations. Proceed until
either a stopper is encountered or all of the
numbers between si and S2, inclusive, have been
converted. Leave those word-pairs (including
markers) unchanged whose bits to the right of
the sign character in the first word are zero if
the first word is not in shortened form; otherwise,
make both words equal to zero. If no decimal-
point indicator is included, a number will be
treated as a fixed-point fraction with the decimal
point understood to be immediately preceding
the first digit to the right of the sign character.
All numbers to be converted must have either a
plus (+) or minus (-) sign as a first character,
with twelve characters being the maximum al-
lowed for a given number, Note that if a plus
or minus character (which is indistinguishable
from an "a" or "b" character after standard in-
put) is not included in atly first word, that word-
pair will remain unchanged. If a decimal-point
is to be included, the symbol "d" mtist be used
in its place. (Thus, the maximum number of
digits allowed for a binary-coded-decimal single-
precision number which includes a decimal-point
indicator is ten.) The prior contents of the second
word of each word-pair allocated to a number
are not critical.

17 RSL (SIS2)

Cops the contents of the right address portion of
s1 in the left address portion of s2.

4

NRL REPORT 6106

d8 LSL (S,S2) de

Copy the contents of the left address portion of
si in the left address portion of s2.

d9 LSR (sl,s2)

Copy the contents of the left address portion of
s5 in the right address portion of S2.

da Sin P

Compute the sine of the contents of the P register,
expressed in radians, and place the adjusted re-
sult in the P register. (In the extended-precision
mode, an error stop will occur if the magnitude
of the argument is greater than 276.)

db Arc Sin P

If the magnitude of the contents of the P register
is less than or equal to one, calculate the princi-
pal value (i.e., the angle in the range - T/2 to 7T/2),
in, radians, of the angle whose sine is equal to the
contents of the P register, and place the adjusted
result in the P register; otherwise, halt on an error
stop.

dc C'MP s

Let a and 8 denote the contents of the P register
and of storage location s, respectively. If either
a or i, is a marker, or if a-,8 exceeds the allowed
range, then this operation is itlndefined; other-
wise, (a) if a < 8, interpretations proceeds to the
next pseudo-order in sequence, (b) if a = 8, in-
terpretation proceeds to the pseudo-order after
next in sequence, and (3) if a > f3, interpretation
proceeds to the second pseudo-order after the
next in sequence.

dd BYP n
0 - n S fff

REP n
0 5- n _ fff

Repeat (perform n times) the sequence of instruc-
tions starting with a pseudo-order at location
s+2(L) and terminating with the instruction FR
s+ 1; then transfer interpretive control to the
right-hand side of location s, i.e., s(R). The repeat
pseudo-instruction must appear only in the left-
hand part of location s, i.e., s(L); furthermore,
the entire next word s+1 must be reserved for the
interpretive routine to use as a working location
(the prior contents of s+I are not critical).

df SRNL s

Exit the interpretive mode of control, place the
right half of the instruction word, followed by
six hexadecimal zeros, in the U register and trans-
fer machine control to s(L), the first instruction
of the subroutine. After the subroutine exit,
re-enter the interpretive mode of control and
transfer control to the next left-hand pseudo-order
in; sequence. In accordance with established
convention, the subroutine's exit instruction must
be a transfer of machine control to the left order
at that address which immediately follows the
address given (by the interpretive routine) in
the left address portion of the A register at the
time of entry. The df pseUdo-instructicn must
appear only in the left half of the instruction word,
the right half being reserved for subroutine pa-
rameter specification.*

CAUTION: If it is temporarily necessary to
enter the interpretive mode of control within
the subroutine, the contents of o-- the interpre-
tive sequence register (locations 0202 and 0203) -
must first be saved before such an entrv. More-
over, this information must be restored to a after
leavings the interpretive mode of control and be-
fore executing the subroutine exit order.

eO

Bypass the next pseudo-order in sequence for
the first n interpretations of this pseuIlo-order:
then on each of the following interpretations
do nothing but proceed directly to the next
pseudo-order in sequence. During each succes-
sive interpretation, the integer in the address
portion of the instruction is changed to take on
successive values from the sequence n-1, n-2,
1. 0, 0, 0, ... , unless changed by the program.

SKIP

Proceed to the next psetido-order in sequence.

el JP

-1 NOTE: NX mllollitor pr ilitolt occuIs ill (conlne(tionl t-ith this oldet:
howes er. it mflotnitor-tivpe pritttout catn he ol)tainied attv mitle the monititor

is 011 hv usingi tie pariti lt ar tseuidlo-instit itio Xl. 03910 wlicil. odldll

tnotigh. ,ill also immttttediately rettrn interpretive contrtol to the next

pseudts-rderll in seitencet..

5

STENNETT, BEARCE, AND MASON

Adjust the contents of the P register if P # 0; other-
wise, proceed to the next pseudo-instruction in
sequence.

e2 FL s

Transfer interpretive control to the left pseudo-
order of storage location s.

e3 FR s

Transfer interpretive control to the right pseudo-
order of storage location s.

e4 NL s

e5 NRs

Enter the NAREC machine-language mode of
control and transfer control to the right order of
storage location s. The re-entry options applica-
ble after using this pseudo-instruction are the
same as those for NL s, described above.

e6 s P

Transfer the word-pair at storage location s to
the P register.

e7 -s P

Enter the NAREC machine-language mode of
control and transfer control to the left order of
storage location s. Upon the occurrence of a
special re-entry instruction LO 0390, interpreta-
tive control will be transferred to the next pseudo-
instruction in the original sequence, provided that
the contents of the interpretive sequence register
of are the same as they were when the e4 pseudo-
order was last interpreted. Table 2 describes and
summarizes the alternative re-entry orders which
may be used and their corresponding functions.

If it is temporarily necessary to enter the inter-
pretive mode of control within the routine
designated by the e4 instruction, the contents
of o (locations 0202 and 0203) must first be saved
before such an entry. Moreover, this information
must be restored to a- after leaving the interpretive
mode of control and before executing the re-entry
order.

Transfer the negative of the word-pair at location
s to the P register.

e8 P s

Transfer the word-pair contained in the P register
to storage location s.

e9 s Pd

Add the floating-point number at storage location
s to the contents of the P register and place the
adjusted result in the P register.

ea -s Pd

Subtract the floating-point number at storage
location s from the contents of the P register and
place the adjusted result in the P register.

TABLE 2
Re-Entry Instruction Table

Instruction Description

LO 0390 Transfer interpretive control to the next pseudo-order in

the original sequence.

RO 0203 Same as LO 0390 except that a monitor printout cannot occur.

RO 0258 Same as RO 0203 except that interpretive control is
transferred to the pseudo-order after next in the original
sequence.

RO 0244 Same as RO 0203 except that interpretive control is
transferred to the second pseudo-order after next in the
original sequence.

6

NRL REPORT 6106

eb MP s

Multiply the contents of the P register by the
floating-point number at storage location s and
place the adjusted, rounded, high-order product
in the P register. (In the extended-precision
mode, if the magnitude of the resulting product
is greater than 2+4095, an error stop will occur.)

ec P/s

If the number at s is not equal to zero, divide the
contents of the P register by the floating-point
number at storage location s and place the ad-
justed, rounded, high-order quotient in the P
register; otherwise, halt on an error stop. (In the
extended-precision mode, if the magnitude of
the resulting quotient is greater than 2+4095j an
error stop will occur.)

ed Exp P

If the contents of P are less than 211, form the
exponential of the floating-point number in the P
register and place the adjusted result in the P
register; otherwise, halt on an error stop.

ee Ln P

If the contents of P are greater than zero, form the
natural logarithm of the floating-point number in
the P register and place the adjusted result in the
P register; otherwise, halt on an error stop.

ef POW n

° In I <|fff fff0I m Log2lPl
Raise the floating-point number in the P reg-
ister to the positive or negative nth power, where
n is an integer satisfying the above inequali-
ty, and place the adjusted result in the P reg-
ister.

fO PT n
0 In l - b

n -±nl

Round to In| decimal places (treating n = 0 as a
special case meaning n = b) and form a conversion
of the number in the P register from floating
binary to adjusted floating decimal.

If the sign digit of n is a zero, leave the P
register unchanged and record (via 33 orders)
the sign and first Inj digits of the converted
fractional part followed by the sign and a two-digit
exponent. (Note that truncation is accomplished
via the 91 order, and at the completion of each
print a 91 order resets the machine for full twelve-
character (33 order) records.)

If the sign digit of n is a one, simply place the
converted number in the P register without re-
cording. (If InI < 11, the last binary-coded-decimal
digit of the fractional part in Po will be followed
by at least one hexadecimal b.)

DPPT i~J

0 s_ i s- b
0 -sj s- b
0 S (i +j) < b

If the floating-binary number in the P register is
suitably scaled, round and convert it to decimal;
then, using 90 orders, print the decimal number
as a single word (not followed by a tab) with a
maximum of thirteen characters, including the
sign and decimal point. Substituting a space
character for each leading zero, allow "i" charac-
ters to the left of the decimal point, in addition to
the sign for the integer part of the number, and
j" characters to the right of the decimal point

for the fractional part. Place the sign digit just
prior to the first nonspace character.

If the number is not suitably scaled, round and
convert it to adjusted floating decimal. Then,
using 90 orders, print the sign, first digit, decimal
point, remaining ten-digit fractional part, and a
five-character exponent (not followed by a tab).
This exponent may contain up to four digits;
space characters are substituted for leading zeros,
and the sign character is placed just prior to the
first nonspace character.

In order to be suitably scaled, the number must
not be so large that more than i characters are
necessary. Moreover, it must not be so small
that more than j characters are needed to show
at least one nonzero digit-that is, of course,
unless the number is a zero (in which case it al-
ways is considered suitably scaled).

The f1 pseudo-order is contained in a single-
address instruction with (ij) in the (2nd, 4th)
or (8th, 10th) hexadecimal digits depending,
respectively, on whether the instruction occurs
in the left or right address portion of a word;

7

fl.

STENNETT, BEARCE, AND MASON

i.e., 0i0 Ifl1. If i and j should be specified such
that (irj) > b, the program will halt on an error
stop. Note that if the hexadecimal digit pre-
ceding i is made to equal 8, virtual zero printout
is possible. In other words, if more than j
characters are needed to show at least one non-
zero digit, the number will still be considered
suitably scaled, and a sign, decimal point, and j
zero characters will be recorded.

f2 N/P

If the contents of the P register are greater than
or equal to zero, form the square root of the
floating-point number in the P register and place
the adjusted result in the P register; otherwise,
halt on an error stop.

PC n
0 -_ n -_3f'

Punch on the Output tape, or place in the line
printer memory, the last six binary digits of n to
represent a single character. Note that n is
specified in the address portion of the pseudo-
instruction and that the P register is unaffected
by it.

f4 FCL s

If the sign bit (digit 0) of the fractional part of the
P register is 0, transfer interpretive control to the
left pseudo-order of storage location s; otherwise,
proceed to the next pseudo-order in sequence.

f5 FCR s

word-pairs (including markers) unchanged whose
bits to the right of the sign place (numerical
portion) in the first word are zero.

f7 s/P

If the number in the P register is not zero, divide
the floating-point number at storage location s by
the contents of the P register and place the ad-
justed, rounded, high-order quotient in the P
register; otherwise, halt on an error stop. (In the
extended-precision mode, if the magnitude of the
resulting quotient is greater than 2+4095, a different
error stop will occur.)

f8 -P

Place the negative of the contents of P in the P
register.

f9 /P/

Place the absolute value of the contents of P in
the P register.

fa 1/

Form the square root of the absolute value of the
floating-point number in the P register and place
the adjusted result in the P register.

fb

Clear the entire contents of the P register.

fc

XP

Cos P

If the sign bit (digit 0) of the fractional part of the
P register is 0, transfer interpretive control to the
right pseudo-order of storage location s; other-
wise, proceed to the next pseudo-order in se-
quence.

f6 CDB (S1,S2)

Starting at si, convert in sequence the nonzero
floating-point numbers from floating decimal to
floating binary, adjust, and replace them. Pro-
ceed until either a stopper is encountered or all
of the numbers between storage locations si and
S2, inclusive, have been converted. Leave those

Compute the cosine of the contents of the P
register, expressed in radians, and place the
adjusted result in the P register. (In the ex-
tended-precision mode an error stop will occur if
the magnitude of the argument is greater than
276.)

fd /s/ Pd

Add the absolute value of the floating-point
number at storage location s to the contents of
the P register and place the adjusted result in the
P register.

8'

B

NRL REPORT 6106

fe Arc Cos P If binary digit 16 is a 1, the pseudo-instruction

If the magnitude of the contents of the P register and its address will not be recorded. The former
is less than or equal to one, calculate the principal type of monitor output behavior is referred to as
value (i.e., the angle in the range 0 to Iv), in radians, "tracking monitor" printout, whereas the latter
of the angle whose cosine is equal to the contents is 'simple monitor" printout.
of the P register, and place the adjusted result in Binary digit 20 of the directory word indicates
the P register; otherwise, halt on an error stop. whether monitoring printout is to begin with a

left-hand or right-hand pseudo-instruction. If
ff MON s it is a 0, the left pseudo-instruction will be moni-

Enter the monitoring mode of operation; track tored; if it is a 1, the right pseudo-order will be
and/or monitor according to the plan of the direc- monitored. Binary digit 44 governs the "end
tory at s. monitoring printout" instruction location in a

Compare the location of each pseudo-instruction similar manner.
encountered with every one of the "begin-moni- If interpretive control is already in the moni-
toring print" locations specified in the left address toring mode, any subsequent ff pseudo-orders are
portions of the directory (which begins at s and interpreted as skips, i.e., control proceeds to the
ends with the first word which is entirely zero). next pseudo-order in sequence.
When an agreement occurs, cause an automatic
printout to occur after each pseudo-order is inter-
preted (including the first) that could change the 7. Entry and Return
contents of the P register (with the exception of The interpretive mode of control is entered
pseudo-order fO), and also compare the location of via the machine-language mode, and a full word
each pseudo-instruction encountered with the is required for standard entry. This word may
"end monitoring print" location specified in the be either
right address portion of that directory word.
When agreement with the latter occurs, discon- (a.) s: sA, RO 0200, or
tinue the automatic printout before "monitoring" (b.) s: sA, LO 0200.
the current pseudo-instruction and proceed as be-
fore to test the location of each pseudo-instruction The former word is slightly more efficient in time
encountered against the table of "begin moni- and, therefore, is recommended. Once the entry
toring print" locations unless binary digit 40 of the is executed, interpretive control will be sent to the
directory word is a 1-in which case, exit the moni- left side of location s+I. The left-hand instruc-
toring mode of operation and proceed with the tion at s+I must be a pseudo-instruction, and all
next pseudo-instruction in sequence. Note that if subsequent operations prior to return to the
an "end monitoring print" location, specified in the machine-language mode also must be specified
right-address portion of a directory word, is the in pseudo-language.
same as the "begin monitoring print" location Return to the machine-language mode of com-
given in the left of the directory word, then auto- putation is accomplished by any one of the
matic printout will continue until the pseudo-order following pseudo-instructions: d4, d5, df, e4, and
with that address is encountered for a second time e5. (A formal definition of each of these has
(if ever). The interpretive mode may be exited already been presented in Section 6.b.)
and re-entered at will without disturbing the action NOTE: Re-entry into the interpretive mode
of the monitor. need not be restricted to standard entry instruc-

The following printout will occur during the tions, but also may be accomplished by more
monitor output phase if binary digit 16 of the convenient techniques described in the definition
pertinent directory word is a 0. of pseudo-order e4 (see Section 6.b).

Recorded via 90 order Recorded via 33 order

CR, tab, XXXX, 2 spaces, XXXXXX, 2 spaces, ±XXXXXXXXXX, tab, _XX, tab
Address of Pseudo-order Interpreted instruction Contents of P

(in hexadecimal) (in hexadecimal) (in floating decimal)

9

STENNETT, BEARCE, AND MASON

8. Output

a. Printout-See definitions of operations for
pseudo-orders fO, fi, and f3 in Section 6b. Note
however that hexadecimal format is recommended
for all interpreted printout (i.e., the format mode
switch on the NAREC console should be set for
hexadecimal output).

b. Location of Results-As was shown in Section 6
the results of most NIP operations are placed in
the P register. The regular-precision P register
is formed of two consecutive working locations as
follows:

(1.) The sign and 44 bit fractional part of
the number are contained in storage location
03b4.

(2.) The signed exponent of the number is
contained in binary digits 0 to 12 of storage
location 03b5. Binary digits 13 through 44
remain fixed (as zeros) throughout all NIP I
operations.

c. Register Contents-Not applicable, except in
the case of pseudo-order df; see Section 6.

d. Changes to External Locations-See Section 6.

Tape 2700 (NIP I) is a revision and extension of
Tape 2000 and is a member of the sequence of
NAREC floating-point interpretive routines, which
now consists of Tapes 501, 1000, 1000A, 1500,
1500A, 2000, 2000A, 2700, and 4700 (NIP II).
For the sake of completeness, Part 1 of this report
includes a detailed description of every operation
included in Tape 2700, even though many of
them are due to Mr. Leo Davis, who wrote the
original Tape 501 program, or to Dr. Benjamin
Lepson, Head of the Numerical Analysis Branch,
Applied Mathematics Staff, under whose guidance
previous revisions and extensions (Tapes 1000,
1500, and 2000) of the original program were
made.

PART 2-EXTENDED-PRECISION
INTERPRETIVE ROUTINE (NIP II)

1. Name of Subroutine

NIP II-Extended Precision for the NIP I
Floating-Point Interpretive Routine.

2. Class

9. Tape Label

2700-0000

10. Address Information

a. First Address: 0000
b. Last Address: 03ff
c. Number of Words: 1024 (decimal)

400 (hexadecimal)

11. External Working Memory

Although no external working memory is
required, programmers are urged to avoid using
memory space between locations 0400 and 08ff
in order to facilitate possible use of the NIP II
program which allows for extended-precision
computation.

12. Versatility

There are no changes which can readily be
made to this subroutine.

Y2, Interpretive Routine, Multiple Precision
Floating-Point.

3. Purpose

NIP II, like NIP I, is an interpretive subroutine
that enables NAREC to perform automatic
floating-point computations. NIP II, unlike
NIP I, can handle as many as nineteen significant
decimal digits. Its pseudo-order code, with only
one exception (the fO print instruction), is identical
to the NIP I code. Indeed, every effort has been
made to make NIP II completely compatible with
any program previously written in the NIP I
language for regular-precision computation.

Since essentially the same set of pseudo-orders
is employed in both NIP I and NIP II, three
distinct modes of computation may be utilized
with equal facility by the programmer. First,
entirely new programs may be written to take
full advantage of the extended-precision capa-
bility. Second, if necessary, extended- and
regular-precision computation may be mixed

13. Acknowledgments

10

NRL REPORT 6106

within the same program. And last, any pro-
gram previously written in the NIP I language,
and not occupying the same memory space as
the Extended-Precision NIP II system itself,
may be run without modification in the extended-
precision mode.

4. Language Used

A combination of actual NAREC machine
language and NIP interpretive language.

5. Author

Edwin A. Stennett, Code 5425.

6. Formal Statement

a. Conventions and Terminology-The conven-
tions and terminology applicable to NIP II
are identical to those presented in Part 1, Sec-
tion 6a.

b. Definitions of Operations-The definitions
of NIP II operations are, with but two excep-
tions, identical to those presented in the NIP I
description. Of course, references to the "con-
tents of s" or the "P register" are now to be
understood as references to the extended-
precision "contents of s" or the extended-precision
"P register."

The first exception concerns the pseudo-orders:

d6 - CDDB (SlS2)

fI - DPPT ij
ff- MON s.

Although executable in the extended-precision
mode, these pseudo-orders continue to operate
as though the regular-precision mode were being
employed. In other words, the printout from
pseudo-order fl and pseudo-order ff will con-
tain, at most, eleven and ten decimal digits,
respectively, and pseudo-order d6 will convert,
at most, ten decimal digits.

The second exception is the fO print instruc-
tion which must be completely redefined as
follows:

fo Pt mn
0 S n :- 13

m S n, m S f

If m is specified (m # 0), round the number in
the P register to n decimal places (0 - n S 13),
treating n = 0 as a special case meaning n 13;
then convert and print, via 90 orders, the number
as an n-digit mantissa in m groups, followed by
a signed exponent containing one, two, three,
or four digits, as necessary. The n - 1 digits
to the right of the decimal point are divided
equally (with the possible exception of a short
last group).

This pseudo-order is contained in a single-
address instruction of the following form:

0 XXX fO.

m n

Execution is subject to the double restriction
that (a) if n should ever exceed 13 or (b) if m
should ever become greater than n, the program
will halt on an error stop. In the example shown
in Table 3 below, a table of printouts of the same
quantity is given to clarify the behavior of this
print operation. (For purposes of the example,
it is assumed that the number 7r/10 is in the P
register.)

TABLE 3
Examples of Printout for

Different Forms of the Extended
Precision Print Instruction

Instruction Result

0113fO -3.141592653589793238 -1
0313fO -3.141592 653589 793238 -1
0210f0 -3.14159265 3589793 -1
030ffO -3.14159 26535 8979 -1

If m is not specified (m= 0), however, then
this pseudo-order behaves in every way iden-
tically to the fO pseudo-order of NIP I.

7. Entry and Return

Programmed entry into the extended-pre-
cision mode of computation is always made
from the regular-precision mode. Either of
the instructions

0470 e4

I11

STENNETT, BEARCE, AND MASON

or
05d3 e4

accomplishes this entry, provided, of course, that
tape 4700 is in its proper operating position;
interpretive control is then sent to the pseudo-
order immediately following the entry instruction.
All floating-point pseudo-orders subsequent to
the extended-precision entry instruction and
prior to the return instruction are executed in the
extended-precision mode, regardless of the num-
ber of times which the interpretive mode itself
may be exited and re-entered.

To return to the NIP I mode of computation,
one of the instructions

0471 e4
or

0658 e4

must be executed. And, in a manner similar to
the entry sequence, interpretive control will
again be sent to the pseudo-order immediately
following the return instruction, after the mode
change has been accomplished.

In order to process, in the extended-precision
mode, programs which were previously written
for the regular precision mode without modifying
such programs, it is necessary only to initiate the
order

LO 0472

from the console prior to executing the usual
starting order of the program. The NAREC
will then stop immediately at location

0473
and the C register will contain

eeee 82 04eO 10.

The usual starting order may then be given from
the console, and all subsequent floating-point
computation will be performed in the extended-
precision mode.

WARNING: Although extended-precision
pseudo-orders may operate on numbers con-
structed in regular-precision format, the opposite
is not true. Regular-precision pseudo-orders
will usually yield erroneous results when forced
to operate on numbers which are constructed
in extended-precision format. Therefore, care
must be taken to convert all numbers in ex-

tended-precision format to regular-precision
format before operating on them in the regular-
precision mode, i.e., binary digits 13 through 44
of s+1 (see Table 1, in Part 1, Section 6.a) must
be made zero.

8. Output

a. Printout-See the definition of operation
for pseudo-orders f0 and fi in Part 2, Section 6,
and in Part 1, Section 6b for f 3. Note however,
that a hexadecimal setting of the format mode
switch is recommended for all interpreted print-
out.

b. Location of Results -While in the extended-
precision mode, the P register is constructed as
follows:

(1.) The sign and first 44 bits of the fractional
part of the number are contained in the arithmetic
portion of the NAREC word at location 04b4.

(2.) The remaining 32 bits of the fractional
part are contained in binary digits 13 to 44 of
the NAREC word at location 04b5.

(3.) The signed exponent of the number is
contained in binary digits 0 to 12 of the NAREC
word at location 04b6.

c. Register Contents-Not applicable, except in
the case of the df pseudo-order; see Part 1,
Section 6.

d. Changes to External Locations-See Part 1,
Section 6.6. Note also that NIP II may alter the
contents of the regular-precision P register in
an indeterminate manner. Therefore when
switching from the regular- to the extended-
precision mode of computation, care should be
taken not to use the P register of NIP I as a storage
location for intermediate results.

9. Tape Labels

4700 - 0400 (NIP II), and 2700 - 0000 (NIP I).

10. Address Information

a.
b.
c.

d.

Tape Number
First address
Last address
Number of Words

2700 4700
0000 0400
03ff 08ff

400 500
(hexi) (hexi)

1024 1280
(decimal) (decimal)

12

NRL REPORT 6106

11. External Working Memory
None.

12. Versatility

There are no changes which can readily be
made to this subroutine.

13. Acknowledgments

The author of this program is indebted to
Gerald A. Chayt and Elliod Dent for their help-
ful suggestions and willing counsel.

Appendix A
The Floating-Point System

INTRODUCTION

Much of the material contained in the following
paragraphs may already be known to the reader-
in fact, the wording may be familiar to him. The
reason for this is that these paragraphs depend
heavily upon the contents of an earlier publica-
tion (now out of print).* The present authors
have updated the applicable portions of that
earlier report and included them here. With per-
mission of the author, they have relied extensively
on direct quotations and close paraphrases in an
attempt to retain the high readability of the origin-
al document.

AUTOMATIC SCALING

The fixed-binary point design of the NAREC
requires that all numbers used by the computer
be less than 1 in absolute value. The computa-
tions which the computer is called upon to per-
form generally are not restricted to such numbers,
so some modification of the equations used will
have to be made,.in order to provide that no
numbers fall outside the range -1 to 1. The
conversion of a given set of equations to an equiva-
lent set which the computer can accept is called
scaling. Problem variables must be multiplied
by appropriate scaling factors (usually integral
powers of two or ten) before they are entered
into the machine. For example, values of x and
y satisfying

y = ax + b (1)

will also satisfy

y. 10-v = (a.10-u)(xl10u-v) + b.10-v.
(2)

It is usually possible to select the u's and v's in
such a way that the resulting equation is ma-
chinable. But the use of constant scaling factors
throughout a computation sometimes leads to
an unacceptable loss of significance in the results.
The floating-point system embodied in the
NAREC Interpretive Program (NIP) represents
one technique for handling such situations. It
makes use of a variable scaling factor which is
associated with each number entering the compu-
tation, and thus permits a variable to go through
a very wide range of values while retaining a
maximum number of significant digits.

One way in which a variable scaling factor may
be introduced is demonstrated by a convention
sometimes used in hand computation. Given
some decimal number, the decimal point is moved
to a standard position and the resulting number
is corrected by a factor 10, where n is the number
of places the point has been moved and is taken
to be positive if the point was moved to the left
and negative if the point was moved to the right.
For example, if the standard decimal point is to
precede the most significant digit, the numbers
given originally as

93257.164392 and 0.000052731944586

will appear as

.93257164392*105 and .52731944586- 10-4,

*L. E. Davis, "Floating-Point Coding for the NAREG," NRL Report
4579, Aug. 1955. respectively.

13

STENNETT, BEARCE, AND MASON

The same convention may be adopted when
binary numbers are used, and this is essentially
what is done in the NAREC floating-point system
because the NAREC, as a binary machine, allows
some simplifications in programming due to the
agreement in number bases. The standard
binary-point location has been selected to cor-
respond with that of the NAREC word, or im-
mediately to the right of the sign digit. The
number of digits by which the point must be
displaced to reach this position xvill be, with proper
sign attached, the power of 2 by which the derived
number must be multiplied. To state this in the
form of an equation, the number x may be said
to be expressed in floating-point form if it is
written as

x - p (3)

where

PI < l (4)

and m is an integer. This representation exists
uniquely for all real numbers, excepting zero.
The case x = 0 is handled by setting p = 0, in
violation of inequality (4). Thus, true zero differs
from all other floating-point numbers in that
it has no adjusted form and its exponent may
take any integer value within the usual range; i.e.,

Iml < 212. (5)

Such a floating-point number is called a "floating-
point zero."

In the first floating-point routine written for
the NAREC, the floating-point zero occasionally
led to confusion in the addition operation, since
adding this zero to a nonzero number sometimes
produced a sum equal to zero instead of the non-
zero number. The situation in which this
occurred was the appearance of a much larger
exponent with the zero than with the other
number. The exponent of the zero was con-
sidered as an indication of its significance and
the floating-point sum of zero and another num-
ber was given as much significance as permitted
by the two numbers. Currently, in the NAREC
Interpretive Program, for example, floating-

point zeros are distinguished and treated as
special cases in those operations where they might
cause trouble. As a result, this source of con-
fusion, and perhaps others, is removed.

A possible source of error still remaining is in
overreaching the magnitude bounds imposed
upon floating-point numbers by the exponent
representation. The largest positive number
expressible in floating-point notation is (1 - 2-44)
24095, or nearly 101233. The smallest nonzero

positive number which can be represented is
approximately 10-1233. Operations which would
produce numbers outside these limits will not be
performed correctly because of register spillovers
in exponent handling. However, the limits given
above are more than adequate for most practical
problems.

In order to request one floating-point operation,
the programmer must write one NIP instruction.
In order to carry out one floating-point instruc-
tion, the interpretive system must execute several
NAREC orders. The steps that have been built
into the NAREC Interpretive Program to perform
the elementary operations of adjustment, multi-
plication, division, and addition in regular pre-
cision will be outlined in the following sections
of this appendix, although the actual orders which
would be used to carry them out will not be given
here. The operations are discussed in the order
of their increasing difficulty. Readers requiring
more specialized information concerning elemen-
tary operations in extended precision will find this
material in Appendix C.

ADJUSTMENT

The principal reason for keeping floating-point
numbers in adjusted form is to prevent loss of
significance in multiplication. For this reason,
and for convenience in some of the other oper-
ations, the convention has been adopted in the
floating-point system of assuming all numbers
involved to be in adjusted form at the beginning
of each operation and of leaving the results in
this form at the completion of the operation.
Since some operations would produce unadjusted
numbers and since it is often convenient to
introduce numbers in' unadjusted form, it is
necessary to have a routine which will convert

14

NRL REPORT 6106

any unadjusted floating-point number, excepting
zero, to standard floating-point form.

The problem here is as follows: Given a number
pi such that 0 < Ipil < 1 and an integer ml
which together represent a number y through the
equation

y = pi 2", (6)

find the numbers p and in such that

y = p * 2,

where 1/2 - IpI < 1 and in is an integer.
any number, it follows from Eq. (6) that

y = (pi * 2') * 2m11.

If i is

(7)

It can be shown that there is just one integer k
for which

2- p Ipi 2k1 < 1,

and furthermore, k a 0 since 11I < 1.
If i is set equal to this value of k in Eq. (7), then
clearly

p p= P 2k
and

mi ml-k

are the values sought.
To find k, the absolute value of pi is placed in

the A register and shifted left just as many times
as needed to make the A register read greater
than or equal to 1/2, or, equivalently, until the
first nonzero digit of 1pil has been shifted into
the digit-i position. These shifts are counted,
and the count is the number k since a left shift
is the same as multiplication by two. After the
shifting process, the A register contains JpI
= I1pi * 2k, and the count number may be sub-
tracted from mi to get the value of m. From this
point it is only a matter of placing the values p,
m * 2-12 in the desired result locations in storage.

MULTIPLICATION
Multiplication is the least complicated arith-

metic operation in floating point. Given two

floating-point numbers yi = pi 2m1 and Y2 = P2

2'2, the product Y3 is

Y3 = Y)Y2 = plp2 . 2m 2

The product p3 = p4p2 and the sum m3 2-12
= (mI + m2). 2-12 are formed. Since p3'may be
less than 1/2, the adjustment routine is used on
p3tm 3 to get P3 ,m 3 , the standard floating-point
representation of y3.

DIVISION

Finding the quotient of two numbers is simpli-
fied by the adjustment convention. If yi and y2

are given as above, their quotient is

Y3 = p3 * 2m 3 = Pi = Pi . 2ml-m2y2.- P2

y2 are assumed to be floating-point

4 - I 1w' < 1

- p IP21 < 1.

Since yi and
numbers,

and

Taking the
relations give

Then either

or

two extreme possibilities, these

- < I- < 2.
2 1P21

2 < INI < 1
12 P <21

- <I-< 1.
2 12p21

Division thus breaks down into two cases: first,
if IlP1 < IP21, then

P3 = P-, and m3 = ml-M 2 ;
P2

15

STENNETT, BEARCE, AND MASON

second, if Ipi I - P21, then

pi * 2-1p3 =- ,and m3 = ml-m 2 + 1.
P2

ADDITION

The addition operation is somewhat more
complicated than the ones previously discussed.
In the first place, the handling of yi and Y2 depends
upon whether m, > m2 or ml < M 2 , while ml = M2

may be considered with either one of these cases.
In the second place, the adjustment of the sum
will depend on whether yi and y2 had the same or
different signs. If they had the same signs it will
depend upon whether an overflow occurred in
the addition, that is, whether the absolute value
of the numbers summed in the A register ex-
ceeded unity.

Assume yt and Y2 are of the same form as
given previously and that ml :) M2 so that pi
and P2 may not be added directly. Now y3,

the sum of y, and y2, may be written in either
of the following two ways:

Y3 = (pI + P2' 2m2-ml) . 2mi

Assume that m1 > m2 and, in fact, mI -m2

k > 0. Then Eq. (8) becomes

y3 = (pI + P 2 -k) 2nl = p' . 2m3,

where

p3 p I+P2 2-k

and

M3= im.

Here two cases are possible. In the first case,
yl and y2, and hence pi and p2, are of opposite
signs so the absolute value of p1+p2 * 2-k will
not be greater than the absolute value of pi
and no spillover can occur. This sum may be
smaller than 2-1, so p'A,m'3 is sent to the adjust-
ment routine to get the floating-point pair p3,m3.
In the second case, yi and y2 are of the same sign.
If IPI + p2 * 2 -k1 is less than unity, then

P3 = pI + p2 * 2
and

(8) If |Ip

m 3 = Ml.

+ P2 * 2-kJ is not less than unity, then

or

y3 = (pI . 2m1?lm2 + p2) .2 m2. (9)

Both pi and P2 are in absolute value not less than
2-1, so they cannot be multiplied by positive
powers of 2 without the results overflowing. How-
ever, either m2 - mI or ml - m 2 will be nonpositive,
and the equation in which this is true is the equa-
tion which will be employed. In other words, if
ml > M2, Eq. (8) will be used; if ml < m2, Eq.
(9) will be used; and if mI = M2 , either equation
may be used.

pl + P2 - 2-k
P3= 2

and

M3 = ml ± 1

provide the floating-point sum. No further
adjustment is needed for either type of result
in this second case.

If m2 > ml, the situation is the same as above
with the subscripts interchanged.

16

NRL REPORT 6106

Appendix B
An Example of a Program Written in Extended Precision

The figures contained in this Appendix are
reproductions of the programming sheets and
other materials instrumental in a recent NAREC
computation by Irene G. Fishman and William E.
Conrad using NIP II. The purpose of this
undertaking was to tabulate accurately, as nine-
teen-decimal-digit numbers, the seven quantities

1 1 -1

n x P' x-x(x+n)' x(x ~n)' x, x + Il,

and (x+n)xn- 1 ,

which all pertain to a test matrix A = x1 + J
which is useful in checking matrix inversion
programs, where I is the identity matrix and J
is a matrix of order n whose elements are all
unity.* These quantities are, respectively, the
order of A, a parameter, any of the equal diagonal

*N1 Newman, and J. Todd. 'The EvalUation of Matrix Inversion
Progranis,"j. Sor. Indulst. Appl. Alath. 6(No. 4):469 (1958).

elements of A inverse, any of the equal off-
diagonal elements of A inverse, the smallest
eigenvalue of A, the largest eigenvalue of A,
and the determinant of A.

The following parameter ranges were specified:

n = 10, 20, 30, 40, 50, 51, 52, ... , 99, 100, 200,
300, ... , 3000, and p= 1, 2, ... , w, where w is the
largest integer to satisfy the inequality w S

100 In 2/ln n, and x is given by the relation:
x = 1/nP.

NOTE: It should be observed that the value
of xn-1 falls outside of the floating-point exponent
range for certain combinations of the parameters;
for example, this occurs in the case n = 60 and p =
12. Therefore, to avoid unwanted error stops,
a detour around the calculation of (x+n)xn-'
was made, and printout of the last column entry
was suppressed whenever

4095 In 2
w > (n-1) In n'

17

STENNETT, BEARCE, AND NIASON

NAR OPERATOR INSTRUCTION SHEET (12/6/61)

RCC Problem Number

Problem Title 1 e2/lZAA / 2:::-
Pass

Date _________

NRL Account Number

Prograriner

Telephone J?, C•

am:3cdo6

LO Ofd2

LO Ofd2

LO Ofd2

LO Ofd2

LO Ofd2

rror.

ME

) L 0O3ab
LO 18eO

1. Version of NAR to be used: NAR I NAR IA LNAR IB1

2. "rack of Memory": First Address in Object Progri

3. "Pre-assign" Tapes (LO Of77) (1) (2) (3)

4. Source Program Tapes:

(1) s 7'3? CONTINUE P.B. (6)_

(2) of 4A~3 LO Ofd2 (7)

(3) LO Ofd2 (8)

(4) LO Ofd2 (9)

(5) _ LO Ofd2 (10)

5. Push CONTINUE P.B. Stops on STOP #3. Any printout indicates an e

6. Printouts Desired if any assembly errors: NONE So

If SOME: Object Prog. (first time) LO 03a5 Obj. Prog. (2nd time
List of Numb. Instrs.etc. LO 03bl Checking Output

7. Printouts Desired if no assembly errors: NONE SO

If SOME: Object Pro,. (first time) LO 03a- Obj. Prog. (2nd time
Li~st of Numb. Instrs.etc. LO 03bl Checking Output

8. Object Program to be placed in Working position?

ES Y Eif no erro NO

Push CONTINUE P.B. if in STOP #8; Otherwise LO 3fd9

9. Special Instructions:

Fig. BI - NAR Operator instruction sheet used in assembling the Matrix Constants program

O . ab
1 8.e0

18

ME

) LO
LU

NRL REPORT 6106

MACHINE LANGUAGE OPERATOR INSTRUCTION SHEET (2/4/64) Date e -

RCC Problem Number _ _ _ Estimated Computation Time - ? 5

Problem Title Actual Computation Time -

Run Programmer; TnX r Tel .Ext.

OUTPUT FORMAT: A:LHexiDeci; col.,Jjnj.Coi. B: Hexi, Deci; col.,Inf.Col.
I T PUNCH, BOTH PRINTER, PUNCH, BOTH

INPUT TAPE INFORMATION
Tape Locations Check Sum
Label From Thru (if known)

11 e-9 Loo eav-er :SG S e 2 ele, 345

g~z-onoko w fK7z4 ;fZENd. l___ . -7j~ _

= , ...$ - =1 L.~ =
= _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ ._ _ __ _ _ '_ _ _ _ __ _ _ _ -- . =_ __ _ _ __ _

SPECIAL INPUT INSTRUCTIONS, MANUAL CHANGES, AND STARTING ORDER(S)

z Peo

PRINT-OUTS
Estimated Time to First Print-out - Total Number of Output Lines

Time Per Line Location of Final Stop Order ____

RESTART ORDERS
Read in Tapes

Manual Changes

Starting Order LO RO

DUMP: Output Format A B Other
Read in Tapes

Manual Changes

Starting Order LO RO
SPECIAL INSTRUCTIONS, ADDITIONAL INFORMATION, ETC. None See Reverse Side

Fig. B2 - Mfachine-language operator instruction sheet used in running the Matrix Constants program

'7-

19

20 STENNETT, BEARCE, AND MAS.ON

IdN

ELi

0

ro

NRL REPORT 6106 zi

~I
=Su

1 0 C .

NjN

CZ

cl

Cb

n 1

22 STENNETT, BEARCE, AND MASON

-~~~ ~~~~ W N---S Z---a

ew* D I h " A- N "tWWbXi . ,

N. = N
1-4e

bb

> .

NRL REPORT 6106 Z

H no n

OttttJ~. \) C

tU

no

STENNETT, BEARCE, AND MASON

tn
0

11W°

ft

11

w
m

11w

< I

8

8

1X

1

ft

'N

Nl~

11

lw \

0
u

i,3zo
N

0 -
-N

N U) UD

24

AlX 14 tm li TIla
E-

1)A

z obL>%'H9<

z . -
0W

CZ
bo

0

a.

3

C-

0

r.

Z
CZ

C

0

bb
1.2

N% .0

I

I

v

- .14 . V

25
(Page 26 Blank)

0 * 0 0 0 0 0 0 0 0 0 0 - * * 0 0 * 0 9 * 0 0 0 0 0

E

M

b

r.-

3

0.

O0 cuU o o.t 0tn, 003 la fO00.s 0 0-JO2 B0

Go 0 ~CU0-~ ,000000 002000 0..,000 0000 0 0 0 C 0

02 o 0 o-
a t 22 22 ho

22 0 22 0 9 I 0 El 22 ., I s.
11 0 0 0 a *4. J a ,- a I- ,c i -a FA C4 022 0) , 0 2 a- 2 -j 0 0 22. '

C.P9LC60 2-o go -c u CZ aC2.0 o t2 2N0:) 22) Coa- 0 . t-M 22 3 0'-M 02 r Lo2 a -o, 0O0 0 Lcw) c, N2 o .J 0402.2

0 0 0 * 0 2 * * 0 * 0 * OOOOOa. 0 *20 * * 2 2 .2* * * * O

@ *000 000 000 @..000 @ * 0e @O @0

dc.id 0 o 0x0 0 -c O00 O O
'MI Mmmoo 0 0

OO oPAVOC~ ~tt k~C.0 daNR, .-0a Q Mv 0L~~0 O L D4-~
.000 OUQO u~uk 000" 00-0000k0000000S 000k.00

T I O M 'A a- 19 "41 Q
41 + 0 au P. C w

0.- CuCu. JWWSCOa,00.- C'JC'r U.L\\LOC-00- oCu0 2 C JC).06 00.- 0 Cis u.OC-000.- 0 0 . V C -00.

0 In@ @ t 0 00* s e e *@000 0 000000 00 CJ CJw OUOOUO0M

* 0 0 0 0 0 - 0 0 * 0 0 0 * * 9 * 0 0 * 0 * - * 0 0 0 * 0

I e @.@@@ OSO 0 @00000 0 @ 0000 00 00 00 00 00 0

P.r d 0 O. 0 0 0UR dt. 0. 0.C x0.d d J00 U O. d ' dCU 0
d k P. a. O .Cd - 0 -~O N'J.0

00 V 0. . 14dC 04 O.0- a N% L~0 * uv. W4A~ 0ooo
4

0 0 0. .~-0
.
0-i U.~-4~U 00'0 . N. 0N ,94 00.

00

0 0 a' " 0) r- 0, 0 0 p
0 0 SU.0 U U, $,. 0 k 4 00o 0

-0 0

0(0 oo00 0P
LO . UT~~l-C0 , J .t~ T0-W'U~-00 . U~ Il0tsO . ~.. '\CC 5 ~...A0-)s0-U 0~f -)5. UdG -O~ O r 1 ~ C C CU U U U U U C ~ ~ ~ Af~u A~U ~~~LN~'0 0 000,00 0 00II0 00 0 0

NRL REPORT 6106

9 9 9 9 9 9 9 9 S 9 9 9

0000.400 n0- 4 d .

B.400 N O O 0.N N..........00 0...4 0 N.. -.

.... E

NNONN NNNO NNO.-NNNN NNNNN N....N..N....
NONN NON NNNN-4N ONNN NNN NNNO NO NNNO OON ONNN NON NN

NNNN NNN4NNN NNN ONN NNNO NNN NON .. N NNN NNNN NNN NN.

N . O NN NN N NN NN NN NN NN NN..N...N.ONN..NN ..N ..NN ..NN ..NN.

ONO7ON,.4NNONNNNNONNN NNN ONOONON ON ~ 1~ 4 ~l OO N O 0N N O NN O O O 44

. e . .' . . 9 9 9 9 9 * 9 06 9 0 9 5

27

----------.............

t "I X".

.......................

STENNETT, BEARCE, AND MASON

Appendix C
Block Diagrams of the Elementary Extended-Precision Operations of

Addition, Complementation, Multiplication, and Division

To some extent the techniques employed within
NIP II for basic arithmetic are dictated by the
NAREC's hardware characteristics. On the other
hand, once action blocks for the elementary ex-
tended-precision operations are programmed,
techniques for the extended-precision functions
may be developed with little or no thought given
to the computer for which they were intended.
Only the basic arithmetic techniques are discussed
in this appendix since they are peculiar to the
extended-precision subroutine and all other
NIP II arithmetic operations and functions are
based on them.

In order to better understand the four block
diagrams, Figs. CI through C4, which show the
steps required for each of the elementary opera-
tions, the following ground rules should be noted:

1. Each extended-precision, floating-point bi-
nary number x = (M,q), where M is a signed
76-bit fractional part and q is a signed 12-bit
exponent, i.e., x = m -2, is normally stored in a
word-pair (s,s+ 1) (see Word Form A).

2. For convenience of handling within the
NIP II subroutine, such word-pairs are separated
and stored in sets of three consecutive working
locations in memory.

a. For example, the extended-precision P
register is constructed of worKing locations,
referred to as spj, s02, and (03 (see Word Form B).

b. A similar set of working locations, re-
ferred to as /ut, /2, and /13, often contains the
argument located at address s in three-part form.

Figure Cl* shows the steps required to form
a sum in extended precision. Note that the
expression 'justify (P with respect to p." means
that 41 and 4)2 must be shifted right (incrementing
4)3 by unity for each binary shift) until 03 =. It3.

The term "carry" in this block diagram (and in the
succeeding diagrams) has its usual arithmetic
meaning.

*It is emphasized that the block diagrams are intended as outlines
only and are not to be considered complete.

-3 -2-1 0 1 2 3 415 6 7 89 10 11 12113 14 15 16117 18 1920121 2223241252627281293031 32133343536137383940141424344

1 1 2346781 011121314516 323334353637383940411 1 42434
s <-Sign>. Bits I to 44 of M

jofM I

I 1. I I 1 1 1 I I11 1 1 1 1 1 1 1T I I I I I I I I I 1 1 1 1 1 1 lI I I I I II 1 I LI T

s Fof q > Bits 45 to 76 of M

Word Form A

-3 -2 -1 0 1 2 3 4 1 5 6 7 8 910 11 12 13 14 15 16 117 18 19 20 121 22 23 24125 26 27 28 129 30 31 32133 34 35 36137 38 39 4041 42 43 44

I TT I I 1 T1llTT l 1111 1 1 IT IT 11 .1 I I IE I I I I I I IIIIIIIIIIIL

Sign Bits I to 44 of P
0' of P_

| Zeros Bits 45 to 76 of P
02

I II IT 11 I I I I II 111 11 1 1T II
Expgn of et Exponent Part of P < Zeros

Word Form B

28

NRL REPORT 6106

s Pd f8 -P

Fig. Cl - Steps required to form a sum in
extended precision (NIP II subroutine)

Figure C2 shows the steps required to form a
two's complement in extended precision. When-
ever a NAREC word is negated (via the regular
machine order -s A), the two's complement is
formed by adding a one to binary digit 44 of the
inversion, which is obtained by replacing each
binary 0 in the original number by a 1, and vice
versa. Clearly, the two's complement of an
extended-precision number arising in NIP II
operation should be formed by adding a one to
the 76th binary place of the inversion of the
original number instead (this is accomplished in
the block labeled-S 2 - 2). By combining a
complementation (of the subtrahend) with an
addition, the elementary operation of subtraction
is obtained.

Figure C3 shows the steps required to form a
product in extended precision. This is accom-
plished by means of the following variation of
the general formula for the exact multiplication
of two binomials: (a+b) (c+d) ac + (ad+bc).

Fig. C2 - Steps required to form a two's complement
in extended precision (NIP II subroutine)

Note also that use is made of the low-order
product resulting from. the regular NAREC
multiply order m s.

Finally, Fig. C4 shows the steps required to
form a quotient in extended precision. The
block diagram depicts the Newton-Raphson
method for approximating the reciprocal of a
number N, in accordance with the iteration
formula

X,+1 = Xi (2 - Xi N).

Starting initially with the value Xo as a first ap-
pr6ximation to 1/N, the process yields a precision
in the result known to double with each iteration.
Because the first approximation to 1/s is deter-
mined to 44 binary places by means of a NIP I
division, the iteration formula needs to be applied
only once and the result multiplied immediately
by the contents of the P register in order to arrive
at the required quotient P/s.

e9

29

STENNETT, BEARCE, AND MASON

MP s

Fig. C3 - Steps required to form a product in extended precision (NIP II subroutine)

30

eb

NRL REPORT 6106

P/s

Fit. (A - Steps required to form a quotient in extended precision
(NIP 11 subroutine)

ec

31

STENNETT, BEARCE, AND MASON

Appendix D
Difference Plots for the Elementary Functions: Square Root,

Cosine, Arc Sine, Logarithm, and Exponential

Figures DI through D5 are semilogarithmic
graphs comparing NIP I and NIP II evaluations
of the elementary functions, considering the latter
as a reference. The functions included are square
root (Fig. DI), cosine (Fig. D2), arc sine (Fig. D3),
logarithm (Fig. D4), and exponential (Fig. D5).
The term "argument" refers to the value of x

IT 12

WS 10-3 * * *

w * * * -0 * * *w

LL * *
LL

00

0
I- 0

z
< ICC15-2

which is carried in the P register; the term "magni-
tude of difference" stands for the expression

I fji(x) - f,(x) 1,
where the letter f symbolizes the function eval-
uated, and the subscripts I and II denote the
regular-precision and extended-precision modes,
respectively.

00 05 * 0

* * ** . O *g- *
* ~ * .-

* 0

I
0,7 1.0

ARGUMENT

Fig. DI - Plot of j(/?)j - (V?)uj as a function of x

32

NRL REPORT 6106 33

'0-Il
0

0 : .. 01-2- ** g .. *

1 ; * * 00 0 .
L* -2 0 0 %00t 0 0 .0 *s

* 10-14 - -0z i2 to *o
10 - ' 0

Z o 0 **e ** **

w0 *10 - *

0 0 o 0

0, 0 0 0 0

1A t0

z
*~-14
10

0 0

-.77 0.0 77-
ARGUMENT

Fig. D2 - Plot of Icosi, (x) -cos, (x)l as a function of x

,o6

0-7

I0

z

Lir

IL

LL

o 0 0S

o ~~~0 0 0 0

o 0 0

00

-'14

10 _

I150
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0

ARGUMENT

Fig. D3 - Plot of jarcsinen (x) - arcsine, (x)| as a function of x

STENNETT, BEARCE, AND MASON

0

0* 0

* 0 *
0 0

00
00

*O e

0

.

*. 0
0 0

0

0 * *
0

0
0

0

0

0.6 0.7 0.8
ARGUMENT

Fig. D4 - Plot of Ulnas (x) - In, (x)l as a function of x

0.6 0.7 0.8 0.9
ARGUMENT

Fig. D5 - Plot of lexpl, (x) - expi (x) as a function of x

34

- 0. 0

* . e
0 .

0I

0 0

.

I 13
E10-z
w

w
IL.L-1

1

w
a
I-

z
4< 15
m I0-

16 1

0
0

I10
00

0

0 * E

* E0

0 0

0 0a

0

0

0

0

0

0

0

0.5 0.9 1.0

-1l
10

z

ajE10

L-
0
w

z 13
210

IT14 L-
0.5 1.0

I

0

35NRL REPORT 6106

Appendix E
Timing of NIP Pseudo-Orders

Table El is intended to give a rough idea of
how much time is required to execute the NIP
instructions on the NAREC.* The measurements
were made in February, 1963, with the following
arguments:

*A. D. Anderson "Floating Point Time Test," NAREC Bulletin #5,
Feb. 13, 1961, lists execution times for pseudo-orders in several other
existing NAREC floating-point interpretive routines.

Regular Precision

(1) Occccccccccd

000000000000

(2) Occccccccccd
000600000000

(3) O0cccccccccd
000000000000

Extended Precision

Occccccccccc
0000cccccccd

Occccccccccc
0006cccccccd

00cccccccccd
000000000000

TABLE El
Time Reqtuired to Perform NIP Instrttctions on the NARECt

Pseudo- Basic Regular- Extended- Argument
Order Coding Precision PIrecisionNumber I Sybol Operation Operation

Number S'__bolI Time (msec) Time (msec) p 5

1.2
1.2
0.7
0.7
0.6
0.7
NT
1.4
1.1
1.1
7.3

28.7
3.7

NT
NT
NT
0.9
1.8
0.6
0.9
1.0
1.0
1.2
1.3
0.9
2.8
2.3
1.8
2.4
9.1

19.4
3.0
NT
NT
5.0
NT
0.7
0.7
NT
2.6
0.8
1.0
5.0
1.2
5.2
3.1)

26.7
NT

dO
dlI
d2
cl3
d4
d5
<16
d7
d8
d9
da
dlb
dc
dd
de
df
eO

e2
e3
e4
e5
e6
e7
e8
e9
ea
eb
cc
ed
ee
ef
fo
fl
f2
f3
f4
f5
16
f7
f8
f9
fa
fb
fc
ftl
fe
ff

ADL (n,s)
ADR (n,s)
MCL s
MCR s
NCL s
NCR s
CDDB (s,, s.)
RSL (s,, s5)
LSL (s,, s5)
LSR (s,, ss)
Sin P
ArcSin P
CMP s
BYP n
REP n
SRN1. s
SKIP
JP
FL s
FR s
NLs
NR s
s P
-s P
P s

s Pd
-s Pcd

Pis
Exp P
Ln P
POW n
PT n
DPPT ij

/PcPC n
FCL s
FCR s
CDB (s ,s,)
s/P
-P
VP/

XP
Cos P
/s/ Pd
ArcCos P
MON s

*n= 2.
tNote that all times in the table are given in milliseconds, and NT in-

dicates that the instruction was not timed.

1.2
1.2
0.7
0.7
0.6
0.7

NT
1.4
1.1
1.1

1100.0
2100.0

5.0
NT
NT
NT

0.9
6.1
0.6
0.9
1.0
1.0
1.2
1.7
0.9
6.8
3.6
4.1

16.0
1800.0
2300.0

31.6
NT
NT
200.0
NT

0.7
0.7

NT
16.0

1.1
1.1

200.0
1.0

1100.0
6.8

2100.0
NT

(1)
(I)
(1)

(3)

(1)
(2)

(I)
(2)
(1)
(1)
(1)M

(1)

(I)
(I)

-(1)
-(1)

(1)
(1)
(1)

(2)

(I)

(2)

(I)
(2)

(1)

(2)

, . . .

STENNETT, BEARCE, AND MASON

Appendix F
NIP Error Stops

There are twenty-one distinct automatic error
stop sequences possible within the NIP system.
When an error stop Occurs, some diagnostic in-
formation is recorded via the RC (33) order before

the NAREC is halted. The reasons for stoppi
and the error stop sequences are shown in Tal:
F1 and F2 for NIP I and NIP II, respective

TABLE F I
NIP I Error Stops and Error Stop Sequences

Pseudo-Order Reason Error Stop Sequence
Number for Stop

db, fe P) > 1 Print Po, Print so, Print a,-, and Stop at 017b

ec 0 Print PO, Print so, Print ao, and Stop at 017b

ed P > 211 Print Po, Print Pi, Print 0o, and Stop at 017b

ee P S 0 Print PO, Print Pi, Print o-o, and Stop at 017b

[(i+f) > a Print y, Print o-o, and Stop at 017b

f2 P < 0 Print Po, Print Pi, Print o-o, and Stop at 017b

f7 0 Print so, Print PO, Print o-o, and Stop at 017b

Any unallowed order Print o-o, and Stop at 017b

TABLE F2
NIP II Error Stops and Error Stop Sequences

Pseudo-Order Reason Error Stop Sequence
Number for Stop

da, fc 1PI > 276 Print (-o and Stop at 017b
(Argument is effectively 00)

db, Fe 1P > 1 Print a-o and Stop at 017b
eb Product wvill exceed the Print aos and Stop at 0559

floating-point range
ec, f7 +Oorquotientwillexceedthe Print o-o and Stop at 017b or 0559

floating-point range
ecl P > 211 Print o-o and Stop at 017b
ee P S 0 Print A-O and Stop at 017b
fO n > 13 Print a-o and Stop at 017b

m > n Print a-0 and Stop at 017b
fl (i+O) > a Print y, Print o-o, anti Stop at 017b
f2 P < 0 Print o-O and Stop at 017b

Any uLnallowed order Print o-0 and Stop at 017b

36

NRL REPORT 6106

Appendix G
Summary of NAR Coding Symbols for NAREC Orders

TABLE GI
NAR Coding Symbols vs NAREC Order Number (8/10/62)

Order | NAR Coding Order NAR Coding
No. j Symbol(s)* No. ! Symbol(s)*

s a
-s a
/s/ a, /s/a
-/s/ a, -/s/a
s ad
-s ad
/s/ ad, /s/ad
-/s/ ad, -/s/ad

m s
rm s

d s, d/ s
xu, s Xu, XU S

50
51
52
53
54
55
56
57

60
61

70
71

80
81

82
83

84

90
91

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
26

30
31
32
33
34
36
38
39

40
41
42
43
44

*Here s (or sl or s2) generally represents a symbolic address but could be a decimal
integer; n generally represents a decimal integer but could be a symbolic address; N
represents a numbered instruction, i.e., a decimal integer where 2 - N - 9999; and m
represents a decimal integer where 0 S m S 255.

xa, s xa, xa s
t sI

s2 m
stop, n stop, stop n
bt sI
s2 m
stm

(00)

lo s, loiN
ro s, roiN
cl s, cliN
cr s, criN
cul s, culiN
cur s, curiN
csl s, csliN
csr s, csriN
cel s, celiN
cer s, ceriN

lal s, laliN
1 ar s, 1ariN
il s, iliN
ir s, iriN
s u
s .au, s.au

al n
ar n
rd s
rc s
ul n
scu n, n scu

ael n
aer n

ua, s ua, ua s
au, s au, au s
a s
u s
!a

n zz

pcu
n pl

37

STENNETT, BEARCE, AND MIASON

Appendix H
Summary of Basic and NAR Coding Symbols for NIP Pseudo-Orders,

Including Brief Descriptions of the Associated NIP Operations

Pseudo-Order Basic Coding NAR Coding
Number Symbol Symbol Brief Descriptions of NIP Operations

dO ADL (n,s) adl n Add n to the Left address of s.
s

-fff' n fff -4095-n64095

d 1 ADR (n,s) adr n Add n to the Right address of s.
s

-fff n s fff -4095--n S4O95

d2 MCL s mcI s Marker Conditional Left: If P con-
tains a marker, transfer interpretive
control to s(L); otherwise, proceed to
next order in sequence.

d3 MCR s mcr s Marker Conditional Right: If P con-
tains a marker, transfer interpretive
control to s(R); otherwise, proceed to
next order in sequence.

d4 NCL s ncl s NAREC Conditional Left: If P is
positive (or zero), exit the interpre-
tive mode of control and transfer
machine control to s(L); otherwise,
proceed to next pseudo-order in
sequence.

d5 NCR s ncr s NAREC Conditional Right: If P is
positive (or zero), exit the interpre-
tive mode of control and transfer
machine control to s(R); otherwise,
proceed to next pseudo-order in
sequence.

d6 CDDB (s1,s2) cddb s, Convert the Decimal-point and fixed-
S2 point Decimal numbers between si and

S2 to floating Binary (leaving markers
unchanged) unless halted by a stop-
per.

d7 RSL (sI,S2) rsl si Place the Right address of si in the
S2 Left of S2.

38

NRL REPORT 6106

d8

d9

da

db

dc

dd

The interpretive mode of control must not be re-entered within the subroutine without

Skip: Proceed to next order in
sequence.
Adjust P (if P s& 0), and transfer con-
trol to the next order in sequence.

Floating Left: Transfer interpretive
control to the order at s(L).

isl Si

S2

LSL (Sl,S2)

LSR (sl,s2)

Sin P

Arc Sin P

CMP s

BYP n

o - n - fff

REP n
o - n fff

SRNL s

lsr si
S2

sin p

arcsin p

cmp s

byp n

O-n-4095

rep n
On 4095

srnl s

Place the Left address of si in the
Left of S2.

Place the Left address of si in the
Right of S2.

Compute the Sine of P and place the
result in the P register.
Compute the Arc Sine of P and place
the result in the P register.

Compare P with s:
(1) If P < s, proceed to next order.
(2) If P = s, proceed to order after

next.
(3) If P > s, proceed to second order

after next.

Bypass the next order n times.

Repeat (perform n times) the loop
starting at location s+2(L) and termi-
nating with the instruction FR s+ 1;
then transfer control to s(R). (The re-
peat order must appear only in s(L),
and s+ 1 must be reserved as a work-
ing location.)

Enter the Subroutine at NAREC Left
of s: Exit the interpretive mode of
control and enter a subroutine at s(L)
with the right half (parameter por-
tion) of the df instruction word in the
left of the U register. Then, after a
conventional subroutine exit, re-enter
the interpretive mode of control and
return to the next left-hand pseudo-
order.

de

df

CAUTION:
special care.

eO

el

e2

SKIP

JP

FL s

skip

ip

fl s

39

STENNETT, BEARCE AND MASON

e3 FR s fr s Floating Right: Transfer interpretive
control to the order at s(R).

e4 NL s nI s NAREC Left: Exit the interpretive
mode of control and transfer machine
control to s(L). Upon occurrence of
the re-entry instruction LO 0390, for
example, re-enter the interpretive
mode of control and transfer control
to the next pseudo-order in sequence.

CAUTION: The interpretive mode of control cannot necessarily be re-entered in this manner unless
special care has been taken to preserve the contents of the sequencing register o- at locations 0202 and
0203.

e5 NR s nr s NAREC Right: Exit the interpretive
mode of control and transfer machine
control to s(R). Re-entry options are
the same as those for NL s.

e6 s P s p Transfer the contents of s to P.

e7 -s P -s p Transfer Minus s to P.

e8 P s p s Transfer the contents of P to s.

e9 s Pd s pd Add s to P and place the result in P.

ea -s Pd -s pd Subtract s from P and place the result
in P.

eb MP s mp s Multiply P by s and place the result
in P.

ec P/S p/s Divide P by s and place the result
in P.

ed Exp P exp p Form the Exponential of P (eP) and
place the result in P.

ee Ln P In p Form the Natural Logarithm of P and
place the result in P.

ef POW n pow n Form the (±)nth Power of P and

0InI d 4095 95 place the result in P.
Log| |S -P 09

40

NRL REPORT 6106

Pt n
-11wns 11

dppt i j
0 iS 11
0 sj -11

0% (i+j) 11

sr p

pc n

fcl s

fcr s

cdb si
S2

f0 PT n
0 InI{-b
n =-+n)

Regular precision only-Depending
on the sign of the signed-magnitude
integer n, Print I n I digits of P:
If n is positive, print P as a rounded
floating-decimal number leaving P
unchanged; if n is negative, simply
round, convert, and place the result
in P without printing. Let n = 0 mean
n = b.

Extended precision only-Print n
digits of P as a rounded floating-deci-
mal number in m groups. Leave P
unchanged. For m = 0, PT m,n
operates in the same way as a PT n
does in Regular Precision for posi-
tive n.

Decimal-Point Print P as a single
decimal-point number with j digits
in the fractional part and i digits
allowed for the integer part, but sup-
press leading zeros. If, however, the
number is not suitably scaled, revert
to a fO-type printout with n = b.
Note that the fI order is given in a
single-address instruction.

Form the Square Root of P and place
the result in P.

Punch n: Punch on the output tape
the character represented by the last
6 bits of n.

Floating Conditional Left: If P is

positive, transfer interpretive con-
trol to s(L); otherwise, proceed to the
next order in sequence.

Floating Conditional Right: If P is

positive, transfer interpretive con-
trol to s(R); otherwise, proceed to the
next order in sequence.

Convert the floating-Decimal numbers
between si and S2 to floating-Binary
(leaving markers unchanged) unless
halted by a stopper.

PT m,n
1 n 13
m <n

fl DPPT i,j
0~isb
0 sj - b
0 _- (i+j) _- b

f2

f3 PC n
0 - n _• 3f

FCL sf4

£5 FCR s

f6 CDB(s1,s 2)

41

STENNETT, BEARCE, AND MASON

f7 s/P s/p Divide the contents of s by P and
place the result in P.

f8 -P -p Form the Negative of P and place the
result in P.

f9 /P/ /p/ Form the Absolute Value of P and
place the result in P.

fa a sr/p/ Form the Square Root of the Absolute
Value of P and place the result in P.

fb XP xp Clear P.

fc Cos P cos p Compute the Cosine of P and place
the result in P.

fd /s/ Pd /s/ pd Add the Absolute Value of the con-
tents of s to P and place the result
in P.

fe Arc Cos P arcos p Compute the Arc Cosine of P and
place the result in P.

ff MON s mon s Turn Monitor on: test, print, and
stop monitoring according to the di-
rectory at s.

42

CURRENT LIST OF NAREC REFERENCES*

Ref.
No.

1 - "Programming Manual for the NAREC,"
J. S. Seward, NRL Report 4652, Nov. 17,
1955

2 - "Exercises for In-Service Course in NAREC
Programming," R. M. Mason, Summer,
1957

3 - "Logical Operations of the NAREC," (su-
perseded by NAREC Reference #14)

4 - Never written

5 - "Subroutine Tapes for the NAREC," B.
Lepson, July 23, 1956

6 - "Subroutine for Polynomial Interpolation,"
J. L. Hammersmith, July 31, 1956

7 - "Directions for Use of Subroutine for the
Runge-Kutta Integration of n First-Order
Ordinary Differential Equations," J. L.
Hammersmith, Apr. 16, 1956

8 - "Directions for Use of Subroutine for the
Runge-Kutta Integration of up to Three,
Second-Order, Ordinary Differential Equa-
tions," J. L. Hammersmith, Apr. 19, 1956

9 - "Subroutine for Evaluation of Spherical
Bessel Functions Using Real Arguments,"
F. Weiner, Apr. 24, 1958

9A - "Subroutine for Evaluation of Spherical
Bessel Functions Using Real Arguments-
Addendum A," D. J. Ellis, Dec. 26, 1962

10 - "Parabolic Interpolation Subroutine," J. L.
Hammersmith, Apr. 24, 1958

11 - "Subroutine for Roots of Polynomials,"
A. D. Anderson, May 7, 1958

*(sopies of the NAREC References are available to qualified persons
upon request. Direct inquiries to Director, U.S. Naval Research Labora-
tory, Washington, D.C. 20390, Attn: Code 4550.

43

12 - "Subroutine for Evaluation of Bessel Func-
tions of the First Kind, Using Real Argu-
ments and Real Positive Orders," F. Weiner,
Sep. 10, 1958

12A - "Subroutine for Evaluation of Bessel Func-
tions of the First Kind, Using Real Argu-
ments and Real Positive Orders-Adden-
dum A," D. J. Ellis, Mar. 13, 1963

13 - "Subroutine for Evaluation of Bessel Func-
tions of the Second Kind, Using Real Argu-
ments and Real Positive Integer Orders,"
F. Weiner, Sep. 16, 1958

14 - "Logical Operations of the NAREC (Re-
vised December 1958)," B. Lepson and R.
M. Mason, May 18, 1959 (superseded by
NAREC Reference #22)

15 - "Floating Point Runge-Kutta Integration
Subroutine for Systems of First-Order
Ordinary Differential Equations," A. D.
Anderson, Feb. 4, 1959

16 - "Integration Subroutine," R. M. Mason and
J. P. Mason, Feb. 5, 1959

16A - "Integration Subroutine (Fixed-Point
Version) - Addendum A," R. M. Mason and
J. P. Mason, July 25, 1962

16B - "Integration Subroutine (Floating-Point
Version)-Addendum B," R. M. Mason,
July 31, 1962

16C - "Integration Subroutine (NELIAC Floating-
Point Version)-Addendum C," R. M.
Mason, J. P. Mason, and A. B. Bligh, Oct. 7,
1963

17 - "Code and Format of Punched Paper Tape
for NAREC Input," A. B. Bligh, Aug. 29,
1959

Ref.
No.

STENNETT, BEARCE, AND MASON

Ref.
No.

Ref.
No.

18 - "Universal Data Conversion Program for
NAREC Data Plotter," W. A. McCool, July
1959

19 - "Fourier and Frequency Analysis Program
with Application to the Analysis of Shock
Motions," W. A. McCool, Oct. 1959

20 - "Solution of Systems of Simultaneous
Linear Equations on the NAREC," B.
Lepson and J. P. Mason, NRL Report 5372,
Oct. 23, 1959

21 - "A Category Classification System for Com-
puter Programs," A. B. Bligh, Mar. 27,
1961

22 - "Logical Operations of the NAREC (Re-
vised April 1961)," B. Lepson, A. B. Bligh,
and R. M. Mason, Apr. 17, 1961

22A - "Correction to Description of Read Opera-
tion (Order 32)," B. Lepson and R. M.
Mason, Sep. 25, 1962

23 - "Memory Dump and Associated Subrou-
tines," R. M. Mason, Nov. 15, 1961

23A - "Memory Dump and Associated Subrou-
tines-Addendum A," J. W. Kallander,
July 26, 1962

24 -"Basic Fixed-Point Subroutine Collection
for the Core Memory," E. Dent and M.
Brinkman, Dec. 20, 1961

25 - "A Programming Glossary for NAREC
Users," R. M. Mason, NRL Report 5779,
Aug. 6, 1962

26 -"A NAREC Program for Least Square
Error Curve Fitting," J. P. Falvey, NRL
Report 5788,June 15, 1962

27 - "A Program for the Execution of LGP-30
Machine-Language Codes on the NAREC
Computer," E. E. Wald and B. Wald, NRL
Report 5919, July 1, 1963

28 - "NIP-A Floating Interpretive Program-
ming System for the NAREC Computer,"
E. A. Stennett, L. S. Bearce, and R. M.
Mason, NRL Report 6106, Dec. 18, 1964

29 - "NELIAC-N-A Tutorial Report," J. W.
Kallander and R. M. Thatcher, NRL Report
5976, June 17, 1963

30 - "NABUR-A NAREC Assembler for the
Burroughs D825 Modular Data-Proces-
sing Computer," R. M. Mason and I. G.
Fishman, NRL Report 5974, Jan. 13, 1964

44

CURRENT LIST OF NAREC BULLETINS*

Bull.
No.

Bull.
No.

1 - "New Left Shift Order (Logical),"
Lepson, Oct. 28, 1959

B.

2 -"Preliminary Discussion of the NAREC
Magnetic Core Memory," B. Lepson, Oct.
28, 1959

3 - "Some Elementary Numerical-Analytic Con-
siderations Involved in Preparing a Prob-
lem for Computation," J. L. Hammersmith,
May 27, 1960

4 - "Floating-Point Binary to Decimal Conver-
sion without Printout," A. T. Hind, Aug.
29, 1960

5 - "Floating Point Time Test," A. D. Ander-
son, Feb. 13, 1961

6 - "Description of Revised Fixed-Point Sub-
routine Tape (Tape 3400)," E. Dent and
A. B. Bligh, Mar. 1, 1961

7 - "New Punched Tape Input Orders (Single
Character Read-Order Number 36) (Stop
Tape Motion-Order Number 84)," B.
Lepson and R. M. Mason, Mar. 10, 1961

8 - "A Standardized Format for Reporting on
Subroutines and Programs," A. B. Bligh,
Apr. 17, 1961

9 - "Numeric Record Subroutine No. 1," A. B.
Bligh, Apr. 20, 1961

10 - "Floating-Point Complex Number Arith-
metic and Square Root Subroutines," E.
Wingfield, May 17, 1961

*Copies of the NAREC Bulletins are availaCble to qualifiedl [ersonls
upon re(qIuest. Direct inquiries to hirector, U.S. Naval Rcsearch Labhott-
tory, Washington, D.C. 20390, Attn: Code 455(0.

10A - "Floating-Point Complex Number Arith-
metic and Square Root Subroutines-Re-
vision A," I. G. Fishman, May 2, 1962

11 - "Summary of Headings in the Standardized
Format for Reporting on Subroutines and
Programs," A. B. Bligh, May 18, 1961

12 - "Memory Recording Subroutine," J. P.
Falvey, May 25, 1961

13 - "Program Readdressing Subroutine," L. S.
Bearce and J. P. Falvey, June 22, 1961

14 - "Numerical Fourier Analysis I," C. G.
Myers, June 5, 1961

15 - "Numerical Fourier Analysis II," C. G.
Myers, June 5, 1961

16 - "Basic Fixed-Point Subroutine Tape for
the Core Memory," E. Dent and M. Brink-
manJune 12, 1961

17 - "Possible Change in Name of the T Regis-
ter," A. B. Bligh, June 22, 1961

18 - "Sine-Cosine Source Program," E. Dent and
M. Brinkman, June 22, 1961

19 - "A Proposed Convention for Labelling
NAREC Punched Tapes," A. B. Bligh,
July 19, 1961

20 - "Subroutine for Evaluation of Bessel Func-
tions of the First Kind for Orders Zero and
One, Using Complex Arguments," J. P.
Mason, July 12, 1961

20A - "Subroutine for Evaluation of Besse] Func-
tions of the First Kind for Orders Zero and
One, Using Complex Arguments - Adden-
dum A," J. P. Mason, Mar. 13, 1962

45

STENNETT, BEARCE, AND MASON

Bull.
No.

Bull.
No.

20B - "NELIAC Function to Evaluate Bessel
Functions of the First and Second Kinds for
Orders Zero and One, Using Complex
Arguments," J. P. Mason, Aug. 3, 1964

21 - "Output Flexowriter Format Information,"
D. E. Tillett, June 28, 1961

22 - "Subroutine for Evaluation of Bessel Func-
tions of the First Kind for Orders Zero and
One, Using Real Arguments," J. P. Mason,
July 26, 1961

22A - "Subroutine for Evaluation of Bessel Func-
tions of the First Kind for Orders Zero
and One, Using Real Arguments-Adden-
dum A," J. P. Mason, Mar. 13, 1962

22B - "NELIAC Function to Evaluate Bessel
Functions of the First and Second Kinds
for Orders Zero and One, Using Positive
Real Arguments," J. P. Mason, Sep. 18,
1964

22C - "NELIAC Function to Evaluate Bessel
Functions of the First Kind for Orders Zero
and One, Using Positive Real Arguments,"
J. P. Mason, Nov. 13, 1964

23 - "Square Root and Square Root Absolute
Source Program," E. Dent and M. Brink-
man, July 24, 1961

24 - "Negative Exponential Source Program,"
E. Dent and M. Brinkman, Aug. 11, 1961

25.1 - "Natural Logarithm Source Program,"
E. Dent and M. Brinkman, Dec. 7, 1961

26 - "Source Program for Multiple or Single
Word Conversion from Decimal to Binary,"
E. Dent and M. Brinkman, Aug. 24, 1961

27 - "NIP I," L. S. Bearce, E. A. Stennett, and
R. M. Mason, July 27, 1961

28 - "Source Program for Arithmetic Overflow
Check," E. Dent and M. Brinkman, Aug.
24, 1961

29 - "English Text Readin Subroutine," A. B.
Bligh, Sep. 8, 1961

30 - "English Text Record Subroutine," A. B.
Bligh, Oct. 12, 1961

31 - "NAR IA," A. B. Bligh, Dec. 19, 1961

32 - "Subroutine for Finding the Zeros of Jo and
J,," J. P. Mason, Oct. 6, 1961

32A - "Subroutine for Finding the Zeros of Jo and
J, -Addendum A," J. P. Mason, Mar. 13,
1962

33 - "Memory Recording Subroutine (Revision
No. 1)," J. Falvey, Dec. 27, 1961

33A - "Memory Recording Subroutine (Revision
No. 2)," J. P. Falvey, Sep. 27, 1962

34 - "Snapshot System (Preliminary Version),"
J. W. Kallander, Oct. 17, 1961

35 - "Equation Solving Routine," R. E. McGill,
Dec. 29, 1961

36 - "Data Read In and Conversion Subroutine
No. 1," J. P. Falvey, Dec. 28, 1961

37 - "Programmer's Glossary for NAREC Users
(Preliminary Version)," R. M. Mason,
Dec. 8, 1961

38 - "Arcsine and Arccosine Source Program,"
E. Dent and M. Brinkman, Feb. 19, 1962

39 - "Binary to Decimal Rounded n Significant
Digits Record and Omit Record Source
Program," E. Dent and M. Brinkman,
Feb. 19, 1962

40 - "Binary to Decimal Rounded Record and
Omit Record Source Program," E. Dent
and M. Brinkman, Feb. 19, 1962

41 - "Programs and Subroutines for Solving
Systems of Simultaneous Linear Equa-
tions," J. P. Mason, Apr. 5, 1962

46

NRL REPORT 6106

Bull.
No.

41A - "NELIAC Functions to Solve Systems of
Simultaneous Linear Equations," J. P.
Mason, Feb. 5, 1964

42 - "Subroutines to Transform a System of
Complex Equations into the Form Re-
quired by the Simultaneous Equations
Routine," J. P. Mason, Mar. 28, 1962

42A - "NELIAC Function to Transform a System
of Complex Equations into the Form Re-
quired by the Simultaneous Linear Equa-
tions Functions," J. P. Mason, Mar. 6, 1964

43 - "Program for Finding the Inverse of a
Matrix," J. P. Mason, Apr. 4, 1962

43A - "NELIAC Function to Find Inverse of a
Matrix," J. P. Mason, Feb. 3, 1964

44 - "Simulation of the LGP-30 Computer,"
E. E. Wald and B. Wald, Mar. 6, 1962

45 - "Snapshot System," J. W. Kallander, Oct.
31, 1962

45A - "NELIAC-N Snapshot," M. Brinkman and
J. W. Kallander, Sep. 15, 1964

46 - "Recent Progress in Equipment Develop-
ment and Programming," A. B. Bligh,
Aug. 10, 1962

47 - "New Logical Comparison Orders 18 and
19," A. B. Bligh, 1. J. Levy, R. M. Mason,
and B. Lepson, Aug. 10, 1962

48 - "New Logical Shift Orders 38 and 39 (A
Entire Left and A Entire Right)," B.
Lepson, A. B. Bligh, I. J. Levy, and R. M.
Mason, Aug. 10, 1962

49 -"New Y Register Sense Order 44," B.
Lepson, A. B. Bligh, I. J. Levy, and R. M.
Mason, June 30, 1964

50.1 - "Character Code Translation Tables,"
I. J. Levy, Mar. 24, 1964

Bull.
No.

51 - "Least Square Smoothing of Equally
Spaced Data," A. T. Hind, Aug. 28, 1962

52 - "Standard Input Form Memory Recording
Subroutine," G. D. Harlow, Sep. 19, 1962

53 - "Source Program for the Evaluation of
Bessel Functions of the First and Second
Kinds for Order Zero and One, Using
Real Arguments," R. E. McGill, Oct. 4,
1962

54 - "A Subroutine for Converting Floating-
Point Data into Linear or Semi-Log Plotter
Coordinates," E. A. Stennett, Dec. 6, 1962

55 - "A Subroutine for Preparing a Log-Log
Plot from a Given Set of Floating-Point
Data," G. Chayt, Dec. 27, 1962

56- "Decimal Point Data Conversion Subrou-
tine," M. Brinkman, Dec. 26, 1962

57 - "Translating Readin Subroutine," D. J.
Ellis and A. B. Bligh, Mar. 12, 1963

58 - "Subroutine for Evaluating Elliptic Inte-
grals," J. P. Mason, Feb. 18, 1963

59.1 - "Extended-Precision Solution of Systems of
Simultaneous Linear Equations," J. P.
Mason, Aug. 16, 1963

59A - "NELIAC Bridge to Solve a Set of Simul-
taneous Linear Equations in Extended Pre-
cision," J. P. Mason, Aug. 3, 1964

60- "Alphanumeric Tape Readin Subroutine,"
A. B. Bligh and I. G. Fishman, Apr. 22,
1963

61 - "NELIAC-N Definitive Memoranda,"J. W.
Kallander, Apr. 27,1963

6 1A - "NELIAC-N Definitive Memorandum #1,"
J. W. Kallander, Apr. 27, 1963

61B - "NELIAC-N Definitive Memorandum #2,"
J. W. Kallander, Apr. 29, 1963

47

STENNETT, BEARCE, AND MASON

Bull.
No.

61C - "NELIAC-N Definitive Memorandum #3,"
J. W. Kallander, Apr. 30, 1963

62 - "Subroutines to Find Eigenvalues of a 3 X 3
and a 4 x 4 Real Matrix," D. J. Ellis, May
14, 1963

63 - "Time Unit Conversion Subroutines," D. J.
Ellis, May 14, 1963

64 -"Reports on NELIAC Work" A. B. Bligh,
Oct. 4, 1963

65- "NELIAC Memory Dump," M. Brinkman,
Oct. 24, 1963

66.1 - "NELIAC-NIP Conversion Functions," M.
Brinkman, Oct. 6, 1964

67 - "Binomial Coefficient," A. B. Bligh, Oct. 29,
1963

68- "NELIAC Function for Matrix Multiplica-
tion,"J. P. Mason, Feb. 3, 1964

69- "Recent Developments in NAREC Hard-
ware," A. B. Bligh and I. J. Levy, Feb. 10,
1964

70- "Determinant Evaluation Function," E. A.
Stennett, Apr. 1, 1964

70A - "Extended Precision Determinant Evalua-
tion Function," E. A. Stennett, Sep. 15,
1964

71 - "Repeat Loop Subroutine," A. B. Bligh,
Mar. 17, 1964

72 - "NELIAC Function for Bioctal Dumps," J.
W. Kallander, Apr. 1, 1964

73 - "Linear Interpolate Function," A. B. Bligh,
Apr. 1, 1964

Bull.
No.

74- "NELIAC Function for Fixed Point Integer
Division with Roundoff," J. W. Kallander,
Apr. 2, 1964

75 - "Precompiled NELIAC Packages," J. W.
Kallander, June 29, 1964

76- "BCD Data Conversion Functions," M.
Brinkman, Oct. 6, 1964

77 - "Numerical Fourier Analysis," C. G. Myers,
Oct. 5, 1964

78 -Forthcoming

79- "Magnetic Tape Functions," S. L. Hill,
June 24, 1964

80- "New Integer Substitution Orders 28 and
29," I. J. Levy, June 29, 1964

81 - "New Line Printer Top of Form Order 92,"
I. J. Levy, June 29, 1964

82- "NELIAC Function to Solve a Cubic Equa-
tion Having Real Coefficients," J. P. Mason,
July 1, 1964

83 - "NELIAC Functions to Generate Plotter
Tapes (Simplified)," G. J. Flenner, Nov.
25, 1964

84- "NELIAC Functions to Generate Plotter
Tapes (General)," C. J. Flenner, Nov. 4,
1964

85 - "NELIAC Function to Evaluate Struve
Functions for Orders Zero and One,"
M. Brinkman and J. P. Mason, Nov. 13,
1964

86 - "NELIAC Functions to Evaluate Sine and
Cosine Integrals," M. Brinkman, Nov. 13,
1964

87 - "NELIAC Functions to Execute Complex
Arithmetic," C. M. Howe, Nov. 12, 1964

48

CURRENT LIST OF NELIAC REFERENCES*

Ref.
No.

1 - "NELIAC-N-A Tutorial Report," J. W. Kallander and R. M. Thatcher,
NRL Report 5976, June 17, 1963, NAREC Reference #29

*Each NELIAC Reference is also assigned a NAREC Reference number as its primary number.

49

CURRENT LIST OF NELIAC BULLETINS*

Bull.
No.

I - "NELIAC-N Definitive Memoranda," J. W.
Kallander, Apr. 27, 1963, NAREC Bulletin
#61

1 A - "NELIAC-N Definitive Memorandum #1,"
J. W. Kallander, Apr. 27, 1963, NAREC
Bulletin #61A

LB - "NELIAC-N Definitive Memorandum #2,"
J. W. Kallander, April 29, 1963, NAREC
Bulletin #61B

IC - "NELIAC-N Definitive Memorandum #3,"
J. W. Kallander, Apr. 30, 1963, NAREC
Bulletin #61C

2 - "Reports on NELlAC Work," A. B. Bligh,
Oct. 4, 1963, NAREC Bulletin #64

3 - "Integration Subroutine (NELIAC Floating-
Point Version)-Addendum C," R. M.
Mason, J. P. Mason, and A. B. Bligh, Oct. 7,
1963, NAREC Reference #16C

4 - "NELIAC Memory Dump," M. Brinkman,
Oct. 24,1963, NAREC Bulletin #65

5.1 - "NELIAC-NIP Conversion Functions," M.
Brinkman, Oct. 6, 1964, NAREC Bulletin
#66.1

6 - "Binomial Coefficient," A. B. Bligh, Oct. 29,
1963, NAREC Bulletin #67

7 - "NELIAC Function to Find Inverse of a
Matrix," J. P. Mason, Feb. 3, 1964, NAREC
Bulletin #43A

8 - "NELIAC Functions to Solve Systems of
Simultaneous Linear Equations," J. P.

*Eaci NELIAC Bulletin is also assigned a NAREC Bulletin or Ref-
crence number as its primary number.

Mason, Feb. 5, 1964, NAREC Bulletin
#41A

8A - "NELIAC Bridge to Solve a Set of Simul-
taneous Linear Equations in Extended
Precision," J. P. Mason, Aug. 3, 1964,
NAREC Bulletin #59A

9 - "NELIAC Function for Matrix Multiplica-
tion," J. P. Mason, Feb. 3, 1964, NAREC
Bulletin #68

10 - "Determinant Evaluation Function," E. A.
Stennett, Apr. 1, 1964, NAREC Bulletin
#70

1iA - "Extended Precision Determinant Evalu-
ation Function," E. A. Stennett, Sep. 15,
1964, NAREC Bulletin #70A

11 - "NELIAC Function to Transform a System
of Complex Equations into the Form Re-
quired by the Simultaneous Linear Equa-
tions Functions," J. P. Mason, Mar. 6, 1964,
NAREC Bulletin #42A

12 - "NELIAC Function for Bioctal Dumps,"
J. W. Kallander, Apr. 1, 1964, NAREC Bul-
letin #72

13 - "Linear Interpolate Function," A. B. Bligh,
Apr. 1, 1964, NAREC Bulletin #73

14 - "NELIAC Function for Fixed Point Integer
Division with Roundoff," J. W. Kallander,
Apr. 2, 1964, NAREC Bulletin #74

15 - "Precompiled NELIAC Packages," J. W.
Kallander, June 29, 1964, NAREC Bulletin
#75

16 - "BCD Data Conversion Functions," M.
Brinkman, Oct. 6, 1964, NAREC Bulletin
#76

17 - "Magnetic Tape Functions," S. Hill, June
24, 1964, NAREC Bulletin #79

50

Bull.
No.

18 - "NELIAC Function to Solve a Cubic Equa-
tion Having Real Coefficients," J. P. Mason,
July 1, 1964, NAREC Bulletin #82

19 - "NELIAC Function to Evaluate Bessel
Functions of the First and Second Kinds for
Orders Zero and One, Using Complex
Arguments," J. P. Mason, Aug. 3, 1964,
NAREC Bulletin #20B

20 - "NELIAC-N Snapshot," M. Brinkman and
J. W. Kallander, Sep. 15, 1964, NAREC
Bulletin #45A

21 - "NELIAC Function to Evaluate Bessel
Functions of the First and Second Kinds for
Orders Zero and One, using Positive Real
Arguments," J. P. Mason, Sep. 18, 1964,
NAREC Bulletin #22B

21A- "NELIAC Function to Evaluate Bessel
Functions of the First Kind for Orders

51
(Page 52 Blank)

Bull.
No.

Zero and One, Using Positive Real Argu-
ments, J. P. Mason, Nov. i3, 1964,
NAREC Bulletin #22C

22 - "NELIAC Functions to Generate Plotter
Tapes (Simplified)," G. J. Flenner, Nov.
25, 1964, NAREC Bulletin #83

23 - "NELIAC Functions to Generate Plotter
Tapes (General)," G. J. Flenner, Nov. 4,
1964, NAREC Bulletin #84

24 - "NELIAC Function to Evaluate Struve
Functions for Orders Zero and One,"
M. Brinkman and J. P. Mason, Nov. 13,
1964, NAREC Bulletin #85

25 - "NELIAC Functions to Evaluate Sine and
Cosine Integrals," M. Brinkman, Nov. 13,
1964, NAREC Bulletin #86

26 - "NELIAC Functions to Execute Complex
Arithmetic," C. M. Howe, Nov. 12, 1964,
NAREC Bulletin #87

Bull.
No.

NRL REPORT 6106

I

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered vhen the overall report is classified)

I.- ORIGINATIN G ACTIVITY (corporate author) 2- REPORT SECURITY C LASSIFICAtION

U.S. Naval Research Laboratory UNCLASSIFIED
Washington, D.C. 20390 2b- C.ROUP

3. REPORT TITLE

NIP -A Floating-Point Interpretive Programming System for the NAREC Computer

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

This is an interim report on the problem.
5. AUTHOR(S) (Last name. first name, initial)

Stennett, Edwin A., Bearce, Loren S., and Mason, Robert M.

6. REPORT DATE 7a. TOTAL NO. Of PAGES 7b. NO. OF REFS

December 18, 1964 54
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMeER(s)

54R01-08; 45B02-03 NRL Report 6106
b. PROJECT NO. NAREC Reference #28

RF 006-02-41-4351; RR 003-09-41-5101
C. 9b. OTHER REPORT NO(S) (Any other numbers that maybe assigned

this report)

d. None
10. AVA IL ABILITY/LIMITATION NOTICES

Unlimited availability -available from CFSTI

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. ABSTRACT

An interpretive programming system has been written for the U.S. Naval Research
Laboratory's medium-speed electronic digital computer (NAREC). This system, known as
NIP (acronym for NAREC Interpretive Programming system), provides for automatic
floating-point computation over the range 10-1233 to 10+1233 in either of two modes. One
mode, called "extended precision," allows for computational results containing as many as
nineteen significant decimal digits. The other (and historically the first) mode, called
"regular precision," allows for as many as eleven significant decimal digits. Using the same
program, it is possible to compute in either mode, which provides a basis for determining
the cumulative effect of computational precision on results. This report discusses conven-
tions and defines instructions which are available for writing a program in the NIP lan-
guage. A brief description of the floating-point system, an example of a program written
in extended precision, and a table of instruction execution times are included in the
appendixes.

DD FORM4 14731JN4i iJ5
Security Classification

53

Security Classification
14. LINK A LINK B LINK C

KEY WORDS ROLE WT ROLE WT ROLE WT

Digital computers
NAREC
Mathematical computer programming
NIP (NAREC Interpretive Program)
Programming manual
Interpretive system
Floating-point arithmetic
Pseudo-instruction
Order code
Double precision arithmetic
Computational aids
Automatic scaling

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.
2a. REPORT SECUIATY CLASSIFICATION; Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.
2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.
3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.
5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an ahsolute minimum requirement.
6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.
7b. NUMBER OF REFERENCES. Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
Itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC."

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized. "

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.
13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S). (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.
14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights is optional.

54
Security Classification

